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Exergy analysis operational constraints. Exergy analysis has proven to be a powerful tool for identifying, quantifying, and
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Alongside this, multi-objective optimization provides a systematic framework to enhance multiple performance
indicators simultaneously, enabling engineers to balance competing objectives such as maximizing thermal
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1. Introduction

Exergy analysis has become an essential tool in modern thermodynamics and energy engineering, providing a more
complete and insightful assessment of energy systems compared to conventional energy analysis. While energy is conserved
according to the first law of thermodynamics, it does not provide information on the quality or usability of energy within a
system. Exergy, on the other hand, quantifies the maximum useful work obtainable as a system comes into equilibrium
with its environment, effectively capturing both the quantity and quality of energy. This distinction allows exergy analysis
to identify irreversibility and inefficiencies that are often overlooked in traditional energy assessments. By highlighting the
locations and magnitudes of these losses, exergy analysis enables engineers and researchers to optimize system
performance, improve resource utilization, and reduce waste. The applicability of exergy analysis spans a wide range of
energy conversion and utilization systems, including power plants, combined heat and power systems, refrigeration cycles,
and emerging renewable energy technologies. Beyond identifying inefficiencies, exergy-based assessments provide
valuable insights into environmental impacts by quantifying the exergy destruction associated with emissions and resource
depletion. This makes exergy analysis not only a powerful diagnostic tool but also a strategic framework for sustainable
energy design and management. Over the past decades, integrating exergy principles has become crucial for comparative
evaluation of conventional and innovative technologies, guiding the development of more efficient, cost-effective, and
environmentally responsible energy systems. Consequently, exergy analysis bridges the gap between theoretical
thermodynamic evaluation and practical engineering optimization, making it an indispensable methodology for advancing
modern energy science and technology [1-4].

The development of next-generation reactors has become a key focus in the pursuit of sustainable and low-carbon energy
solutions. These advanced reactors are designed to address the limitations of conventional systems by offering higher
thermal efficiency, enhanced safety features, and greater operational flexibility. Innovations such as high-temperature
operation, modular construction, advanced fuel technologies like TRISO particles, and passive safety systems enable these
reactors to perform reliably under extreme conditions while minimizing the risk of accidents. Furthermore, next-generation
designs aim to integrate seamlessly with industrial processes, providing not only electricity but also high-temperature heat
for hydrogen production, desalination, and other industrial applications. By advancing both technological capabilities and
safety standards, the development of these reactors represents a critical step toward a more sustainable, versatile, and
resilient energy infrastructure systems for the future [5-6].

Next-generation reactors, particularly High-Temperature Reactors (HTRs), represent a significant evolution in energy
technology, combining enhanced safety, higher efficiency, and versatile operational capabilities. Unlike conventional light-
water reactors, HTRs operate at outlet temperatures ranging from 750°C to over 900°C, which substantially improves
thermal efficiency and enables the direct coupling of reactors to various high-temperature industrial processes. These
advanced reactors often use helium or carbon dioxide as inert coolants and graphite as a moderator, providing chemically
stable, high-conductivity environments that minimize corrosion and enhance passive safety. Moreover, the use of TRISO
fuel particles ensures robust containment of fission products, even under extreme temperature conditions, thereby further
improving the overall safety profile of the system [7-8].

The high-temperature operation of these reactors opens the door to a wide array of industrial applications beyond electricity
generation. HTRs can efficiently drive high-temperature chemical processes, including hydrogen production via

thermochemical cycles, water desalination for producing fresh water, and synthetic fuel generation, offering an integrated
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approach to meeting both energy and industrial heat demands. Additionally, their modular and flexible design allows for
scalable construction, shorter deployment times, and potential use in cogeneration systems where electricity and process
heat are simultaneously supplied. By combining robust safety features, operational versatility, and high thermal efficiency,
next-generation HTRs are positioned as a cornerstone technology for sustainable, multi-purpose energy systems capable of
addressing the growing global demand for clean energy and industrial process heat [8-11].

Optimizing HTGRs requires a comprehensive understanding of both energy and exergy performance, as traditional energy
analysis alone cannot capture the intrinsic inefficiencies in complex systems. Exergy analysis provides a rigorous
thermodynamic framework to quantify inefficiencies and identify locations where useful work is lost due to entropy
generation, high-temperature gradients, or material limitations. By revealing the sources and magnitudes of thermodynamic
losses, exergy-based assessment enables engineers to target critical subsystems, improve fuel utilization, enhance thermal
efficiency, and reduce environmental impacts. In the context of HTGRs, exergy analysis is particularly valuable due to the
high operating temperatures and diverse applications, from electricity generation to hydrogen production and process heat,
where optimal use of available energy resources is essential for system sustainability and economic feasibility [12-13].
Building on exergy analysis, multi-objective optimization techniques, especially those based on evolutionary algorithms
such as genetic algorithms, particle swarm optimization, and NSGA-I1, have proven effective in simultaneously improving
multiple conflicting performance criteria. These approaches allow designers to optimize reactor operating conditions,
coolant flow rates, fuel configurations, and heat exchanger designs while balancing trade-offs between thermal efficiency,
safety, operational flexibility, and environmental impact. By integrating exergy-based evaluation with evolutionary multi-
objective optimization, researchers can generate Pareto-optimal solutions that guide the design and operation of HTGR
systems toward maximum performance. Such optimization frameworks not only enhance energy and exergy efficiency but
also provide actionable insights for the sustainable and safe deployment of next-generation high-temperature energy
systems [12-15].

Despite the considerable body of research devoted to the analysis and optimization of HTGRs, many fundamental aspects
of their thermodynamic behavior, efficiency improvement, and system-level optimization remain insufficiently understood.
Previous studies have often emphasized conventional energy analyses or isolated exergy assessments, without fully
addressing the complex interactions among reactor subsystems, heat transfer mechanisms, and multi-objective trade-offs
involving efficiency, safety, and sustainability. Ryszard Bartnik and Hnydiuk-Stefan investigated the energy efficiency and
economic feasibility of retrofitting coal-fired power plants by integrating high-temperature gas-cooled reactors (HTGRs)
and turboexpanders to achieve supercritical steam parameters by 2025. Their study adopted an incremental approach to
assess the potential advantages of this modernization, emphasizing the integration of the Joule and Clausius—Rankine cycles
[16]. In 2024, Yujia Zhou et al. conducted the first comprehensive analysis of the thermodynamic, economic, and
environmental performance of an HTGR—-SCO: system using the energy, exergy, economic, and environmental (4E)
evaluation framework. They proposed a cascaded SCO- configuration consisting of two serially connected sub-cycles on
the cold side of the reactor heat exchanger, demonstrating that this arrangement effectively enhances heat utilization from
the HTGR through optimized top and bottom cycle designs [17]. In 2021, H. Neser et al. performed a comparative
evaluation of three energy-based fault detection and isolation (FDI) techniques—namely, enthalpy—entropy error-based,
residual-based, and eigendecomposition-based methods. A Brayton cycle-based power conversion unit (PCU) served as the
case study, simulated under both normal and faulted conditions, and analyzed using energy representations such as

enthalpy—entropy diagrams and attributed graphs [18]. Qi Wang et al. (2026) proposed a flexibly configured cogeneration
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system driven by two types of small modular reactors (SMRs), integrated with a typical petrochemical complex for
combined electricity and steam production. The system was analyzed under two operational schemes from both energy and
exergy perspectives [19]. Finally, Jiarui Zhao et al. (2023) developed a comprehensive mathematical model for a marine
power secondary circuit system and introduced an enhanced adaptive multi-objective particle swarm optimization algorithm
(AMOPSO-APD). Optimization of key design parameters under safety and performance constraints resulted in a 10.57%
reduction in system weight, a 13.68% reduction in volume, and a 4.26% improvement in efficiency [20].

The increasing global demand for sustainable and efficient energy has intensified the focus on HTRs as promising
candidates for next-generation energy systems. Despite their potential, the complex thermodynamic behavior of HTRs and
the inherent inefficiencies in their processes pose significant challenges in achieving optimal performance. Exergy analysis
provides a rigorous framework to quantify these inefficiencies and assess the true potential of energy conversion in such
reactors. Moreover, the integration of multi-objective optimization techniques, particularly those based on evolutionary
algorithms, allows simultaneous improvement of multiple conflicting performance criteria, such as thermal efficiency,
safety, and fuel utilization. Therefore, this study aims to comprehensively review the state-of-the-art exergy analysis and
multi-objective optimization methodologies applied to HTRs, highlighting their effectiveness, limitations, and future
research opportunities. By consolidating existing knowledge, this work not only emphasizes the critical role of exergy-
based assessment in maximizing reactor efficiency but also underscores the importance of evolutionary optimization as a

strategic tool for the design and operation of advanced energy systems.

2. Theoretical Framework

The theoretical framework of this study integrates the principles of exergy analysis, multi-objective optimization, and
evolutionary computation to evaluate and enhance the performance of HTGRs. Exergy analysis provides a powerful
thermodynamic foundation for identifying sources of irreversibility and quantifying the real potential of energy conversion
processes. In energy systems, especially HTGRs, where heat transfer occurs at very high temperatures, exergy-based
assessment becomes essential for maximizing system efficiency and minimizing entropy generation.

2.1. Multi-Objective Exergy Optimization Approaches

Traditional energy analysis methods are often insufficient for complex systems because they do not account for the quality
or usability of energy. Exergy analysis, by contrast, measures the useful work potential of energy flows relative to the
environment, providing a more rational basis for optimization. In practical applications, the design of HTGR systems
involves multiple conflicting objectives such as maximizing exergy efficiency, minimizing component mass, reducing fuel
consumption, and ensuring safety margins. Hence, multi-objective exergy optimization methods are used to balance these
trade-offs. The Pareto optimality concept is typically employed to identify the set of non-dominated solutions, representing

optimal compromises among the competing design criteria [21-23].

2.2. High-Temperature Gas-Cooled Reactors

HTGRs embody several technological innovations that distinguish them from other Generation IV systems. Their modular
reactor architecture typically consists of either prismatic block or pebble-bed configurations, both designed for high
reliability and ease of maintenance. The prismatic design employs hexagonal graphite blocks containing fuel compacts and
coolant channels, while the pebble-bed type utilizes spherical fuel elements that continuously circulate through the reactor
core. These modular configurations allow for passive decay heat removal through natural convection and radiation, ensuring

inherent safety even in loss-of-coolant scenarios. From a thermal-hydraulic standpoint, HTGRs exhibit excellent heat
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transfer performance due to the low density and high specific heat capacity of helium coolant. This feature enables compact
heat exchangers and enhances the coupling efficiency between the reactor and secondary power conversion systems. The
reactors can be integrated with advanced thermodynamic cycles such as Brayton, Rankine, or supercritical CO: (S-COz)
cycles to further elevate thermal efficiency and reduce specific fuel consumption. Among these, the direct helium Brayton
cycle is particularly attractive because it eliminates the need for an intermediate heat exchanger, simplifying system design

and minimizing exergy losses across heat transfer interfaces [24]. The schematic diagram of a HTGR is shown in Fig. 1.
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Fig 1. Schematic diagram of HTGR, showing the prismatic core, graphite moderator, and helium coolant circulation loop [24].
In terms of fuel technology, HTGRs rely on TRISO (Tri-structural Isotropic) coated fuel particles, which represent one of
the most robust fuel forms developed to date. Each fuel particle consists of a uranium kernel encased in multiple protective
layers of carbon and silicon carbide, forming a miniature containment structure capable of withstanding temperatures
exceeding 1600 °C. This design not only retains fission products effectively but also allows for higher fuel burnup,
extending the operational lifetime of fuel elements and reducing waste generation. Consequently, the fuel design aligns
closely with the sustainability and proliferation-resistance goals of next-generation systems. Furthermore, the multi-
functionality of HTGR technology extends its role beyond power generation to serve as a central node in integrated energy
systems. Coupled with high-temperature electrolysis or thermochemical cycles such as the Sulfur—Iodine (S—I) or Copper—
Chlorine (Cu—Cl) processes, HTGRs can facilitate large-scale hydrogen production without carbon emissions. Similarly,
their steady and controllable heat output makes them ideal for district heating, industrial steam generation, and process heat
supply for industries such as metallurgy, ammonia synthesis, and petrochemical refining. This operational flexibility
positions HTGRs as a bridge between the electric and thermal energy sectors, contributing significantly to decarbonization
and sectoral coupling in future low-carbon energy infrastructures [25-27]. A schematic representation of a cogeneration
plant with its flow diagram showing simultaneous production of electricity, desalinated water, district heating, and cooling

using waste heat from a HTGR is demonstrated in Fig. 2.
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Fig 2. HTGR-based cogeneration system producing electricity, desalinated water, heating, and cooling [27].

From an economic and deployment perspective, Small Modular HTGRs are gaining attention due to their scalability, factory
fabrication potential, and shorter construction timelines. These modular units can be deployed incrementally to match local
energy demand and reduce upfront capital risk, while maintaining the same safety and efficiency standards as larger

systems. Coupled with advanced digital control systems, predictive maintenance, and exergy-based optimization
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algorithms, modular HTGRs offer a pathway toward autonomous, intelligent, and economically viable power plants that

align with the broader vision of sustainable energy transitions [28].

2.3 Multi-Objective Evolutionary Algorithms

To address the nonlinear, non-convex, and highly coupled nature of HTGR optimization problems, Multi-Objective
Evolutionary Algorithms (MOEAs) have become indispensable. These algorithms, such as NSGA-II (Non-dominated
Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), and their adaptive or hybrid
variants, are capable of efficiently exploring large and complex design spaces without requiring gradient information. By
integrating exergy analysis with MOEAs, researchers can identify optimal configurations that enhance thermal efficiency,
reduce exergy destruction, and maintain structural safety. The Pareto front obtained from such optimization provides
valuable decision-making support, enabling designers to select configurations that achieve the best trade-off between
performance, cost, and sustainability [29-31]. Fig. 3 shows the integration of exergy analysis with MOEAs for HTGRs

optimization.

Integration of Exergy Analysis with Multi- Objective
Evolutionary Algorithms for HTGR Optimization
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Fig.3. Integration of exergy analysis with MOEAs for HTGR optimization [30-31].

3. Discussion

Recent studies increasingly emphasize the integration of exergy analysis with multi-objective optimization frameworks to
enhance the performance of high-temperature gas-cooled reactors (HTGRs). The majority of the reviewed literature
identifies exergy efficiency and total exergy destruction rate as the primary objective functions, frequently combined with
economic metrics or safety constraints to ensure a holistic system evaluation. Among optimization techniques, algorithms
such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization
(MOPSO) are most widely employed. These approaches yield well-distributed Pareto fronts that effectively illustrate trade-
offs among thermal efficiency, reactor safety, and fuel utilization. Optimized HTGR configurations, particularly those
incorporating combined Brayton or supercritical CO: (S—CO-) cycles, achieve overall exergy efficiencies ranging from
45% to 55% a marked improvement over conventional Rankine-based system. This advancement underscores the critical
interplay between reactor thermodynamic behavior and optimization methodology. The convergence of these approaches
not only facilitates more efficient reactor designs but also supports informed decision-making in balancing performance,

safety, and economic viability [32-34].
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Comparative analyses indicate that NSGA-II remains the most reliable algorithm for HTGR applications due to its effective
balance between convergence speed and solution diversity. However, hybrid approaches such as GA—PSO and NSGA-III
coupled with surrogate models or response surface methods demonstrate superior capability in managing multi-variable,
nonlinear interactions in exergy optimization. Furthermore, several studies have shown that adaptive MOEAs, which
dynamically tune control parameters, outperform classical algorithms in maintaining diversity along the Pareto front. This
improvement enables more robust optimization outcomes under varying operational constraints, such as coolant
temperature and pressure [35-38].

Exergy destruction analysis across different HTGR configurations consistently identify the reactor core, intermediate heat
exchanger, and turbine as the dominant sources of irreversibility, collectively accounting for 60—75% of total exergy losses.
By incorporating evolutionary optimization, multiple studies have achieved a 10—20% reduction in total exergy destruction
primarily by optimizing coolant flow distribution, pressure ratios, and turbine inlet temperatures. Additionally, advanced
Brayton and S—CO: cycles effectively minimize exergy losses in secondary systems due to reduced temperature gradients
and enhanced thermal recovery effectiveness [38-40].

Another emerging trend involves the integration of HTGRs with hydrogen production cycles such as sulfur—iodine (S-I)
and copper—chlorine (Cu—Cl). Multi-objective optimization in these hybrid systems typically aims to maximize both exergy
efficiency and hydrogen yield under economic and safety constraints. Optimized S—I cycle coupled with HTGRs can
achieve overall exergy efficiencies up to 50%, while Cu—Cl cycles show slightly lower performance but offer improved
material compatibility and reduced operational risk. These findings highlight the potential of exergy-based optimization as
a systematic framework for identifying optimal integration pathways between heat and industrial hydrogen production [41-
42].

Despite the remarkable progress achieved in integrating exergy analysis with MOEAs for HTGR optimization, several
challenges persist. One of the most critical limitations lies in the substantial computational cost of simulating large-scale,
multi-parameter HTGR systems within evolutionary frameworks. Since MOEAs require thousands of function evaluations
to generate a well-distributed Pareto front, their application to high-fidelity reactor models often involving detailed
neutronic, thermohydraulic, and material coupling demands considerable computational resources and processing time.
This computational intensity restricts the number of design variables explored and limits the practical adoption of such
techniques in real-world design environments or online operational frameworks [43-44].

Another major constraint arises from uncertainty in material properties and degradation mechanisms at extremely high
operating temperatures (typically above 900 °C). Because HTGR components such as the reactor pressure vessel, fuel
compacts, and heat exchangers undergo prolonged exposure to elevated temperatures, inaccuracies in data for thermal
conductivity, creep resistance, and corrosion introduce uncertainty into exergy destruction estimates. Consequently,
optimization results may deviate from actual performance if such material uncertainties are not accounted for through robust
uncertainty quantification or sensitivity analyses. This underscores the need for reliable high-temperature material databases
and experimentally validated models to support predictive, exergy-based optimization of next-generation reactors [45-46].
A further methodological limitation concerns the absence of standardized objective functions that comprehensively
integrate thermodynamic, safety, economic, and environmental criteria within a unified optimization framework. Many
studies still emphasize exergy efficiency and thermal performance while treating safety margins, fuel cycle costs, and
lifecycle economic indicators as secondary considerations. This fragmentation limits the ability to conduct holistic

optimization and hinders cross-study comparability. Developing standardized metrics and benchmarking protocols for

301



Advances in Energy
Scnence and Technologv -~ A E gT
g Il s EWEES_ .~ e

exergy-based optimization would substantially enhance reproducibility, transparency, and consistency across the field. Fig.
4. illustrates the Pareto fronts representing the trade-offs between exergy efficiency and total exergy destruction rate for
different optimization algorithms. NSGA-II shows a balanced distribution and faster convergence, while hybrid GA-PSO
achieves a slightly wider coverage of the solution space. Additionally, the limited utilization of Artificial Intelligence (AI)-
assisted surrogate modeling and digital twin technologies represents another significant gap. While some recent works have
demonstrated the feasibility of coupling MOEAs with surrogate models such as Gaussian process regression, artificial
neural networks, or response surface methodologies to approximate complex reactor responses at a fraction of the
computational cost, such applications remain relatively isolated. Broader adoption of Al-driven surrogate models could
dramatically accelerate convergence, enhance global search capability, and facilitate multi-scale integration of reactor
physics and system-level performance. Furthermore, the emergence of digital reactor twins’ virtual replicas continuously
updated through sensor data and physics-based simulations offers a transformative pathway toward real-time exergy
monitoring and adaptive optimization during reactor operation. Integrating MOEAs and machine learning algorithms within
digital twin platforms may enable self-optimizing, self-correcting HTGR systems capable of dynamically adjusting control
parameters in response to changing operational or environmental conditions [47-50]. The Table 1 summarizes
representative studies focusing on exergy-based multi-objective optimization of HTGRs. It highlights the optimization
method, key objective functions, principal design variables, and the achieved performance improvements in terms of exergy

efficiency and total exergy destruction reduction [42].
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Fig 4. Comparison of Pareto front distributions obtained by NSGA-II, MOPSO, and hybrid GA—PSO algorithms for HTGR exergy
optimization [48-50].

Table 1. Comparative summary of recent exergy-based multi-objective optimization studies on HTGR systems [42].

Optimization Objective - Reported Exergy Reduction in Exergy

Method Functions Key Parameters Optimized Efficiency (%) Destruction (%)

NSGA-II Nex, Cost Pressure ratio, T inlet 48.5 12

MOPSO Nex, Safety index  Coolant flow, Core geometry 46.8 10

GA-PSO Hybrid T]efﬁ,.FU?l Flow distribution, Heat 502 15
utilization recovery

Adaptive NSGA-ITI Nex, Cost, Risk Pressure ratio, Material type 52.1 18

+ ANN

NSGAII+S-CO;  mey, Hs yield Cycle temperature, 545 20

Recompression ratio
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Looking ahead, future research should focus on developing hybrid optimization frameworks that combine the exploratory
strength of MOEAs with the predictive learning capability of AI. Such hybrid approaches can substantially reduce
computational demands, enhance convergence stability, and improve robustness under uncertainty. In parallel, embedding
exergy-based models into digital twin environments could enable continuous, closed-loop optimization throughout the
reactor’s lifecycle from design and commissioning to operation and maintenance. Ultimately, these advancements are
expected to pave the way toward next-generation intelligent systems that are not only thermodynamically optimized but
also capable of autonomous decision-making, predictive diagnostics, and real-time performance enhancement supporting
the global transition to safer, cleaner, and more sustainable energy infrastructures [49,51]. Finally, the distribution of total
exergy destruction among major components of the HTGR system, including the reactor core, turbine, compressor, heat
exchanger, and recuperator is shown in Fig. §

Component-wise Exergy Destruction Distribution

Heat Exchanger

Recuperator

Compressor

Turbine

Fig 5. Exergy destruction distribution across major HTGR components, with the reactor core showing the highest contribution [51].

The thermoeconomic Pareto front illustrates the trade-off between exergy efficiency (n_ex) and system cost for the
optimized HTGR configurations. As expected, the results show an inverse relationship between the two objectives —
designs with higher exergy efficiency generally involve higher investment or operational costs, while lower-cost solutions
are associated with reduced thermodynamic performance. The Pareto-optimal front (highlighted in red) represents the set
of non-dominated solutions, where any further improvement in exergy efficiency would require an increase in cost, and
vice versa. This curve provides valuable insight into the economic—thermodynamic compromise inherent to HTGR
systems. From the observed trend, the steeper segment of the Pareto front corresponds to the region where small gains in
efficiency result in disproportionately large cost increases — indicating diminishing economic returns for very high-
efficiency designs. Conversely, the flatter region of the front identifies cost-effective configurations, where moderate
efficiency improvements can be achieved with minimal additional cost. Therefore, the optimal operating zone can be
identified near the knee point (or “elbow”) of the Pareto curve, which provides a balanced compromise between
performance and economic feasibility. This point can serve as a reference for decision-making in HTGR thermoeconomic
optimization, especially when design priorities favor both energy utilization and cost control [39-40]. Fig. 6 illustrates the

thermodynamic trade-off between system cost and exergy efficiency on the Pareto front.
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Fig 6. The thermodynamic trade off; cost vs exergy efficiency [40].

4. Conclusion

HTGRs represent a pivotal step toward achieving sustainable, efficient, and inherently safe energy systems. The integration
of exergy analysis with multi-objective optimization frameworks, particularly those based on MOEAs, has proven to be a
powerful strategy for enhancing reactor thermodynamic performance while balancing competing criteria such as efficiency,
safety, and cost-effectiveness. The reviewed studies demonstrate that methods like NSGA-II, MOPSO, and their hybrid or
adaptive variants are capable of generating well-distributed Pareto fronts, effectively elucidating trade-offs between exergy
efficiency and total exergy destruction. Optimized HTGR configurations, especially those coupled with advanced Brayton
or supercritical CO2 (S—CO2) cycles, consistently achieve exergy efficiencies between 45% and 55%, representing
significant improvements over conventional cycles. However, despite these advancements, several methodological and
computational challenges persist. The high computational demand of MOEAs, uncertainties in high-temperature material
properties, and the absence of standardized multi-criteria performance metrics remain key barriers to broader
implementation. Addressing these issues requires the incorporation of robust uncertainty quantification, high-fidelity
material databases, and unified benchmarking frameworks that integrate thermodynamic, safety, economic, and
environmental indicators within a single optimization platform. Looking forward, the convergence of Al, surrogate
modeling, and digital twin technologies offers a transformative pathway toward real-time, adaptive exergy optimization of
HTGRs. Hybrid AI-MOEA frameworks can substantially reduce computational costs, enhance global search capability,
and enable continuous optimization across all reactor life stages from conceptual design to operational management.
Ultimately, the evolution of such intelligent, self-optimizing systems will accelerate the transition toward next-generation
reactors that are not only thermodynamically superior but also capable of autonomous decision-making, predictive
diagnostics, and dynamic performance enhancement. These developments mark a decisive step toward a more resilient,

efficient, and sustainable energy future.
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