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Abstract 
High-Temperature Gas-Cooled Reactors (HTGRs) have emerged as one of the most promising technologies for 

sustainable, efficient, and safe system energy generation. Despite their advantages, the thermodynamic 

performance of HTGRs is often limited by inherent irreversibility, complex thermal-hydraulic interactions, and 

operational constraints. Exergy analysis has proven to be a powerful tool for identifying, quantifying, and 

minimizing these inefficiencies, offering critical insights into system design and operational improvement. 

Alongside this, multi-objective optimization provides a systematic framework to enhance multiple performance 

indicators simultaneously, enabling engineers to balance competing objectives such as maximizing thermal 

efficiency, minimizing exergy destruction, reducing operational costs, and improving overall system 

sustainability. This review focuses on the integration of Multi-Objective Evolutionary Algorithms (MOEAs) 

with exergy-based analysis for HTGR optimization. Key methodologies, including Pareto-based, indicator-

based, and hybrid evolutionary approaches, are examined in detail, highlighting their effectiveness in navigating 

complex trade-offs and achieving convergence in high-dimensional design spaces. The study synthesizes recent 

advancements in algorithm development, performance evaluation, and application strategies, emphasizing the 

potential of MOEAs to significantly improve reactor thermodynamic efficiency while providing robust 

decision-making tools for reactor designers. Finally, current challenges and future research directions are 

discussed, including the development of hybrid optimization frameworks, incorporation of uncertainty 

quantification, real-time operational optimization, and the extension of these methodologies to next-generation 

reactor systems, aiming to foster sustainable and high-performance energy solutions. 
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1. Introduction  

Exergy analysis has become an essential tool in modern thermodynamics and energy engineering, providing a more 

complete and insightful assessment of energy systems compared to conventional energy analysis. While energy is conserved 

according to the first law of thermodynamics, it does not provide information on the quality or usability of energy within a 

system. Exergy, on the other hand, quantifies the maximum useful work obtainable as a system comes into equilibrium 

with its environment, effectively capturing both the quantity and quality of energy. This distinction allows exergy analysis 

to identify irreversibility and inefficiencies that are often overlooked in traditional energy assessments. By highlighting the 

locations and magnitudes of these losses, exergy analysis enables engineers and researchers to optimize system 

performance, improve resource utilization, and reduce waste.  The applicability of exergy analysis spans a wide range of 

energy conversion and utilization systems, including power plants, combined heat and power systems, refrigeration cycles, 

and emerging renewable energy technologies. Beyond identifying inefficiencies, exergy-based assessments provide 

valuable insights into environmental impacts by quantifying the exergy destruction associated with emissions and resource 

depletion. This makes exergy analysis not only a powerful diagnostic tool but also a strategic framework for sustainable 

energy design and management. Over the past decades, integrating exergy principles has become crucial for comparative 

evaluation of conventional and innovative technologies, guiding the development of more efficient, cost-effective, and 

environmentally responsible energy systems. Consequently, exergy analysis bridges the gap between theoretical 

thermodynamic evaluation and practical engineering optimization, making it an indispensable methodology for advancing 

modern energy science and technology [1-4]. 

The development of next-generation reactors has become a key focus in the pursuit of sustainable and low-carbon energy 

solutions. These advanced reactors are designed to address the limitations of conventional systems by offering higher 

thermal efficiency, enhanced safety features, and greater operational flexibility. Innovations such as high-temperature 

operation, modular construction, advanced fuel technologies like TRISO particles, and passive safety systems enable these 

reactors to perform reliably under extreme conditions while minimizing the risk of accidents. Furthermore, next-generation 

designs aim to integrate seamlessly with industrial processes, providing not only electricity but also high-temperature heat 

for hydrogen production, desalination, and other industrial applications. By advancing both technological capabilities and 

safety standards, the development of these reactors represents a critical step toward a more sustainable, versatile, and 

resilient energy infrastructure systems for the future [5-6]. 

Next-generation reactors, particularly High-Temperature Reactors (HTRs), represent a significant evolution in energy 

technology, combining enhanced safety, higher efficiency, and versatile operational capabilities. Unlike conventional light-

water reactors, HTRs operate at outlet temperatures ranging from 750°C to over 900°C, which substantially improves 

thermal efficiency and enables the direct coupling of reactors to various high-temperature industrial processes. These 

advanced reactors often use helium or carbon dioxide as inert coolants and graphite as a moderator, providing chemically 

stable, high-conductivity environments that minimize corrosion and enhance passive safety. Moreover, the use of TRISO 

fuel particles ensures robust containment of fission products, even under extreme temperature conditions, thereby further 

improving the overall safety profile of the system [7-8]. 

The high-temperature operation of these reactors opens the door to a wide array of industrial applications beyond electricity 

generation. HTRs can efficiently drive high-temperature chemical processes, including hydrogen production via 

thermochemical cycles, water desalination for producing fresh water, and synthetic fuel generation, offering an integrated 
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approach to meeting both energy and industrial heat demands. Additionally, their modular and flexible design allows for 

scalable construction, shorter deployment times, and potential use in cogeneration systems where electricity and process 

heat are simultaneously supplied. By combining robust safety features, operational versatility, and high thermal efficiency, 

next-generation HTRs are positioned as a cornerstone technology for sustainable, multi-purpose energy systems capable of 

addressing the growing global demand for clean energy and industrial process heat [8-11]. 

Optimizing HTGRs requires a comprehensive understanding of both energy and exergy performance, as traditional energy 

analysis alone cannot capture the intrinsic inefficiencies in complex systems. Exergy analysis provides a rigorous 

thermodynamic framework to quantify inefficiencies and identify locations where useful work is lost due to entropy 

generation, high-temperature gradients, or material limitations. By revealing the sources and magnitudes of thermodynamic 

losses, exergy-based assessment enables engineers to target critical subsystems, improve fuel utilization, enhance thermal 

efficiency, and reduce environmental impacts. In the context of HTGRs, exergy analysis is particularly valuable due to the 

high operating temperatures and diverse applications, from electricity generation to hydrogen production and process heat, 

where optimal use of available energy resources is essential for system sustainability and economic feasibility [12-13]. 

Building on exergy analysis, multi-objective optimization techniques, especially those based on evolutionary algorithms 

such as genetic algorithms, particle swarm optimization, and NSGA-II, have proven effective in simultaneously improving 

multiple conflicting performance criteria. These approaches allow designers to optimize reactor operating conditions, 

coolant flow rates, fuel configurations, and heat exchanger designs while balancing trade-offs between thermal efficiency, 

safety, operational flexibility, and environmental impact. By integrating exergy-based evaluation with evolutionary multi-

objective optimization, researchers can generate Pareto-optimal solutions that guide the design and operation of HTGR 

systems toward maximum performance. Such optimization frameworks not only enhance energy and exergy efficiency but 

also provide actionable insights for the sustainable and safe deployment of next-generation high-temperature energy 

systems [12-15]. 

Despite the considerable body of research devoted to the analysis and optimization of HTGRs, many fundamental aspects 

of their thermodynamic behavior, efficiency improvement, and system-level optimization remain insufficiently understood. 

Previous studies have often emphasized conventional energy analyses or isolated exergy assessments, without fully 

addressing the complex interactions among reactor subsystems, heat transfer mechanisms, and multi-objective trade-offs 

involving efficiency, safety, and sustainability. Ryszard Bartnik and Hnydiuk-Stefan investigated the energy efficiency and 

economic feasibility of retrofitting coal-fired power plants by integrating high-temperature gas-cooled reactors (HTGRs) 

and turboexpanders to achieve supercritical steam parameters by 2025. Their study adopted an incremental approach to 

assess the potential advantages of this modernization, emphasizing the integration of the Joule and Clausius–Rankine cycles 

[16]. In 2024, Yujia Zhou et al. conducted the first comprehensive analysis of the thermodynamic, economic, and 

environmental performance of an HTGR–SCO₂ system using the energy, exergy, economic, and environmental (4E) 

evaluation framework. They proposed a cascaded SCO₂ configuration consisting of two serially connected sub-cycles on 

the cold side of the reactor heat exchanger, demonstrating that this arrangement effectively enhances heat utilization from 

the HTGR through optimized top and bottom cycle designs [17]. In 2021, H. Neser et al. performed a comparative 

evaluation of three energy-based fault detection and isolation (FDI) techniques—namely, enthalpy–entropy error-based, 

residual-based, and eigendecomposition-based methods. A Brayton cycle-based power conversion unit (PCU) served as the 

case study, simulated under both normal and faulted conditions, and analyzed using energy representations such as 

enthalpy–entropy diagrams and attributed graphs [18]. Qi Wang et al. (2026) proposed a flexibly configured cogeneration 
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system driven by two types of small modular reactors (SMRs), integrated with a typical petrochemical complex for 

combined electricity and steam production. The system was analyzed under two operational schemes from both energy and 

exergy perspectives [19]. Finally, Jiarui Zhao et al. (2023) developed a comprehensive mathematical model for a marine 

power secondary circuit system and introduced an enhanced adaptive multi-objective particle swarm optimization algorithm 

(AMOPSO-APD). Optimization of key design parameters under safety and performance constraints resulted in a 10.57% 

reduction in system weight, a 13.68% reduction in volume, and a 4.26% improvement in efficiency [20]. 

The increasing global demand for sustainable and efficient energy has intensified the focus on HTRs as promising 

candidates for next-generation energy systems. Despite their potential, the complex thermodynamic behavior of HTRs and 

the inherent inefficiencies in their processes pose significant challenges in achieving optimal performance. Exergy analysis 

provides a rigorous framework to quantify these inefficiencies and assess the true potential of energy conversion in such 

reactors. Moreover, the integration of multi-objective optimization techniques, particularly those based on evolutionary 

algorithms, allows simultaneous improvement of multiple conflicting performance criteria, such as thermal efficiency, 

safety, and fuel utilization. Therefore, this study aims to comprehensively review the state-of-the-art exergy analysis and 

multi-objective optimization methodologies applied to HTRs, highlighting their effectiveness, limitations, and future 

research opportunities. By consolidating existing knowledge, this work not only emphasizes the critical role of exergy-

based assessment in maximizing reactor efficiency but also underscores the importance of evolutionary optimization as a 

strategic tool for the design and operation of advanced energy systems. 

2. Theoretical Framework 

The theoretical framework of this study integrates the principles of exergy analysis, multi-objective optimization, and 

evolutionary computation to evaluate and enhance the performance of HTGRs. Exergy analysis provides a powerful 

thermodynamic foundation for identifying sources of irreversibility and quantifying the real potential of energy conversion 

processes. In energy systems, especially HTGRs, where heat transfer occurs at very high temperatures, exergy-based 

assessment becomes essential for maximizing system efficiency and minimizing entropy generation. 

2.1. Multi-Objective Exergy Optimization Approaches 

Traditional energy analysis methods are often insufficient for complex systems because they do not account for the quality 

or usability of energy. Exergy analysis, by contrast, measures the useful work potential of energy flows relative to the 

environment, providing a more rational basis for optimization. In practical applications, the design of HTGR systems 

involves multiple conflicting objectives  such as maximizing exergy efficiency, minimizing component mass, reducing fuel 

consumption, and ensuring safety margins. Hence, multi-objective exergy optimization methods are used to balance these 

trade-offs. The Pareto optimality concept is typically employed to identify the set of non-dominated solutions, representing 

optimal compromises among the competing design criteria [21-23]. 

2.2. High-Temperature Gas-Cooled Reactors 

HTGRs embody several technological innovations that distinguish them from other Generation IV systems. Their modular 

reactor architecture typically consists of either prismatic block or pebble-bed configurations, both designed for high 

reliability and ease of maintenance. The prismatic design employs hexagonal graphite blocks containing fuel compacts and 

coolant channels, while the pebble-bed type utilizes spherical fuel elements that continuously circulate through the reactor 

core. These modular configurations allow for passive decay heat removal through natural convection and radiation, ensuring 

inherent safety even in loss-of-coolant scenarios. From a thermal-hydraulic standpoint, HTGRs exhibit excellent heat 
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transfer performance due to the low density and high specific heat capacity of helium coolant. This feature enables compact 

heat exchangers and enhances the coupling efficiency between the reactor and secondary power conversion systems. The 

reactors can be integrated with advanced thermodynamic cycles  such as Brayton, Rankine, or supercritical CO₂ (S-CO₂) 

cycles to further elevate thermal efficiency and reduce specific fuel consumption. Among these, the direct helium Brayton 

cycle is particularly attractive because it eliminates the need for an intermediate heat exchanger, simplifying system design 

and minimizing exergy losses across heat transfer interfaces [24]. The schematic diagram of a HTGR is shown in Fig. 1. 

 

Fig 1. Schematic diagram of HTGR, showing the prismatic core, graphite moderator, and helium coolant circulation loop [24]. 

In terms of fuel technology, HTGRs rely on TRISO (Tri-structural Isotropic) coated fuel particles, which represent one of 

the most robust fuel forms developed to date. Each fuel particle consists of a uranium kernel encased in multiple protective 

layers of carbon and silicon carbide, forming a miniature containment structure capable of withstanding temperatures 

exceeding 1600  °C. This design not only retains fission products effectively but also allows for higher fuel burnup, 

extending the operational lifetime of fuel elements and reducing waste generation. Consequently, the fuel design aligns 

closely with the sustainability and proliferation-resistance goals of next-generation systems.  Furthermore, the multi-

functionality of HTGR technology extends its role beyond power generation to serve as a central node in integrated energy 

systems. Coupled with high-temperature electrolysis or thermochemical cycles such as the Sulfur–Iodine (S–I) or Copper–

Chlorine (Cu–Cl) processes, HTGRs can facilitate large-scale hydrogen production without carbon emissions. Similarly, 

their steady and controllable heat output makes them ideal for district heating, industrial steam generation, and process heat 

supply for industries such as metallurgy, ammonia synthesis, and petrochemical refining. This operational flexibility 

positions HTGRs as a bridge between the electric and thermal energy sectors, contributing significantly to decarbonization 

and sectoral coupling in future low-carbon energy infrastructures [25-27]. A schematic representation of a cogeneration 

plant with its flow diagram showing simultaneous production of electricity, desalinated water, district heating, and cooling 

using waste heat from a HTGR is demonstrated in Fig. 2. 
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Fig 2. HTGR-based cogeneration system producing electricity, desalinated water, heating, and cooling [27]. 

From an economic and deployment perspective, Small Modular HTGRs are gaining attention due to their scalability, factory 

fabrication potential, and shorter construction timelines. These modular units can be deployed incrementally to match local 

energy demand and reduce upfront capital risk, while maintaining the same safety and efficiency standards as larger 

systems. Coupled with advanced digital control systems, predictive maintenance, and exergy-based optimization 
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algorithms, modular HTGRs offer a pathway toward autonomous, intelligent, and economically viable power plants that 

align with the broader vision of sustainable energy transitions [28]. 

2.3 Multi-Objective Evolutionary Algorithms 

To address the nonlinear, non-convex, and highly coupled nature of HTGR optimization problems, Multi-Objective 

Evolutionary Algorithms (MOEAs) have become indispensable. These algorithms, such as NSGA-II (Non-dominated 

Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), and their adaptive or hybrid 

variants, are capable of efficiently exploring large and complex design spaces without requiring gradient information. By 

integrating exergy analysis with MOEAs, researchers can identify optimal configurations that enhance thermal efficiency, 

reduce exergy destruction, and maintain structural safety. The Pareto front obtained from such optimization provides 

valuable decision-making support, enabling designers to select configurations that achieve the best trade-off between 

performance, cost, and sustainability [29-31]. Fig. 3 shows the integration of exergy analysis with MOEAs for HTGRs 

optimization. 

 
Fig.3. Integration of exergy analysis with MOEAs for HTGR optimization [30-31]. 

3. Discussion 

Recent studies increasingly emphasize the integration of exergy analysis with multi-objective optimization frameworks to 

enhance the performance of high-temperature gas-cooled reactors (HTGRs). The majority of the reviewed literature 

identifies exergy efficiency and total exergy destruction rate as the primary objective functions, frequently combined with 

economic metrics or safety constraints to ensure a holistic system evaluation. Among optimization techniques, algorithms 

such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization 

(MOPSO) are most widely employed. These approaches yield well-distributed Pareto fronts that effectively illustrate trade-

offs among thermal efficiency, reactor safety, and fuel utilization. Optimized HTGR configurations, particularly those 

incorporating combined Brayton or supercritical CO₂ (S–CO₂) cycles, achieve overall exergy efficiencies ranging from 

45% to 55%  a marked improvement over conventional Rankine-based system. This advancement underscores the critical 

interplay between reactor thermodynamic behavior and optimization methodology. The convergence of these approaches 

not only facilitates more efficient reactor designs but also supports informed decision-making in balancing performance, 

safety, and economic viability [32–34]. 
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Comparative analyses indicate that NSGA-II remains the most reliable algorithm for HTGR applications due to its effective 

balance between convergence speed and solution diversity. However, hybrid approaches  such as GA–PSO and NSGA-III 

coupled with surrogate models or response surface methods demonstrate superior capability in managing multi-variable, 

nonlinear interactions in exergy optimization. Furthermore, several studies have shown that adaptive MOEAs, which 

dynamically tune control parameters, outperform classical algorithms in maintaining diversity along the Pareto front. This 

improvement enables more robust optimization outcomes under varying operational constraints, such as coolant 

temperature and pressure [35–38]. 

Exergy destruction analysis across different HTGR configurations consistently identify the reactor core, intermediate heat 

exchanger, and turbine as the dominant sources of irreversibility, collectively accounting for 60–75% of total exergy losses. 

By incorporating evolutionary optimization, multiple studies have achieved a 10–20% reduction in total exergy destruction  

primarily by optimizing coolant flow distribution, pressure ratios, and turbine inlet temperatures. Additionally, advanced 

Brayton and S–CO₂ cycles effectively minimize exergy losses in secondary systems due to reduced temperature gradients 

and enhanced thermal recovery effectiveness [38-40]. 

Another emerging trend involves the integration of HTGRs with hydrogen production cycles such as sulfur–iodine (S–I) 

and copper–chlorine (Cu–Cl). Multi-objective optimization in these hybrid systems typically aims to maximize both exergy 

efficiency and hydrogen yield under economic and safety constraints. Optimized S–I cycle coupled with HTGRs can 

achieve overall exergy efficiencies up to 50%, while Cu–Cl cycles show slightly lower performance but offer improved 

material compatibility and reduced operational risk. These findings highlight the potential of exergy-based optimization as 

a systematic framework for identifying optimal integration pathways between heat and industrial hydrogen production [41-

42]. 

Despite the remarkable progress achieved in integrating exergy analysis with MOEAs for HTGR optimization, several 

challenges persist. One of the most critical limitations lies in the substantial computational cost of simulating large-scale, 

multi-parameter HTGR systems within evolutionary frameworks. Since MOEAs require thousands of function evaluations 

to generate a well-distributed Pareto front, their application to high-fidelity reactor models  often involving detailed 

neutronic, thermohydraulic, and material coupling  demands considerable computational resources and processing time. 

This computational intensity restricts the number of design variables explored and limits the practical adoption of such 

techniques in real-world design environments or online operational frameworks [43-44]. 

Another major constraint arises from uncertainty in material properties and degradation mechanisms at extremely high 

operating temperatures (typically above 900 °C). Because HTGR components such as the reactor pressure vessel, fuel 

compacts, and heat exchangers undergo prolonged exposure to elevated temperatures, inaccuracies in data for thermal 

conductivity, creep resistance, and corrosion introduce uncertainty into exergy destruction estimates. Consequently, 

optimization results may deviate from actual performance if such material uncertainties are not accounted for through robust 

uncertainty quantification or sensitivity analyses. This underscores the need for reliable high-temperature material databases 

and experimentally validated models to support predictive, exergy-based optimization of next-generation reactors [45-46]. 

A further methodological limitation concerns the absence of standardized objective functions that comprehensively 

integrate thermodynamic, safety, economic, and environmental criteria within a unified optimization framework. Many 

studies still emphasize exergy efficiency and thermal performance while treating safety margins, fuel cycle costs, and 

lifecycle economic indicators as secondary considerations. This fragmentation limits the ability to conduct holistic 

optimization and hinders cross-study comparability. Developing standardized metrics and benchmarking protocols for 
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exergy-based optimization would substantially enhance reproducibility, transparency, and consistency across the field. Fig. 

4. illustrates the Pareto fronts representing the trade-offs between exergy efficiency and total exergy destruction rate for 

different optimization algorithms. NSGA-II shows a balanced distribution and faster convergence, while hybrid GA–PSO 

achieves a slightly wider coverage of the solution space. Additionally, the limited utilization of Artificial Intelligence (AI)-

assisted surrogate modeling and digital twin technologies represents another significant gap. While some recent works have 

demonstrated the feasibility of coupling MOEAs with surrogate models  such as Gaussian process regression, artificial 

neural networks, or response surface methodologies  to approximate complex reactor responses at a fraction of the 

computational cost, such applications remain relatively isolated. Broader adoption of AI-driven surrogate models could 

dramatically accelerate convergence, enhance global search capability, and facilitate multi-scale integration of reactor 

physics and system-level performance. Furthermore, the emergence of digital reactor twins’  virtual replicas continuously 

updated through sensor data and physics-based simulations  offers a transformative pathway toward real-time exergy 

monitoring and adaptive optimization during reactor operation. Integrating MOEAs and machine learning algorithms within 

digital twin platforms may enable self-optimizing, self-correcting HTGR systems capable of dynamically adjusting control 

parameters in response to changing operational or environmental conditions [47-50]. The Table 1 summarizes 

representative studies focusing on exergy-based multi-objective optimization of HTGRs. It highlights the optimization 

method, key objective functions, principal design variables, and the achieved performance improvements in terms of exergy 

efficiency and total exergy destruction reduction [42]. 

 
 

Fig 4. Comparison of Pareto front distributions obtained by NSGA-II, MOPSO, and hybrid GA–PSO algorithms for HTGR exergy 

optimization [48-50]. 

Table 1. Comparative summary of recent exergy-based multi-objective optimization studies on HTGR systems [42]. 

Optimization 

Method 

Objective 

Functions 
Key Parameters Optimized 

Reported Exergy 

Efficiency (%) 

Reduction in Exergy 

Destruction (%) 

NSGA-II ηex, Cost Pressure ratio, T inlet 48.5 12 

MOPSO ηex, Safety index Coolant flow, Core geometry 46.8 10 

GA–PSO Hybrid 
ηex, Fuel 

utilization 

Flow distribution, Heat 

recovery 
50.2 15 

Adaptive NSGA-III 

+ ANN 
ηex, Cost, Risk Pressure ratio, Material type 52.1 18 

NSGA-II + S–CO₂ ηex, H₂ yield 
Cycle temperature, 

Recompression ratio 
54.5 20 
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Looking ahead, future research should focus on developing hybrid optimization frameworks that combine the exploratory 

strength of MOEAs with the predictive learning capability of AI. Such hybrid approaches can substantially reduce 

computational demands, enhance convergence stability, and improve robustness under uncertainty. In parallel, embedding 

exergy-based models into digital twin environments could enable continuous, closed-loop optimization throughout the 

reactor’s lifecycle  from design and commissioning to operation and maintenance. Ultimately, these advancements are 

expected to pave the way toward next-generation intelligent systems that are not only thermodynamically optimized but 

also capable of autonomous decision-making, predictive diagnostics, and real-time performance enhancement  supporting 

the global transition to safer, cleaner, and more sustainable energy infrastructures [49,51]. Finally, the distribution of total 

exergy destruction among major components of the HTGR system, including the reactor core, turbine, compressor, heat 

exchanger, and recuperator is shown in Fig. 5. 

 
Fig 5. Exergy destruction distribution across major HTGR components, with the reactor core showing the highest contribution [51] . 

The thermoeconomic Pareto front illustrates the trade-off between exergy efficiency (η_ex) and system cost for the 

optimized HTGR configurations. As expected, the results show an inverse relationship between the two objectives — 

designs with higher exergy efficiency generally involve higher investment or operational costs, while lower-cost solutions 

are associated with reduced thermodynamic performance.  The Pareto-optimal front (highlighted in red) represents the set 

of non-dominated solutions, where any further improvement in exergy efficiency would require an increase in cost, and 

vice versa. This curve provides valuable insight into the economic–thermodynamic compromise inherent to HTGR 

systems.  From the observed trend, the steeper segment of the Pareto front corresponds to the region where small gains in 

efficiency result in disproportionately large cost increases — indicating diminishing economic returns for very high-

efficiency designs. Conversely, the flatter region of the front identifies cost-effective configurations, where moderate 

efficiency improvements can be achieved with minimal additional cost.  Therefore, the optimal operating zone can be 

identified near the knee point (or “elbow”) of the Pareto curve, which provides a balanced compromise between 

performance and economic feasibility. This point can serve as a reference for decision-making in HTGR thermoeconomic 

optimization, especially when design priorities favor both energy utilization and cost control [39-40]. Fig. 6 illustrates the 

thermodynamic trade-off between system cost and exergy efficiency on the Pareto front. 
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Fig 6. The thermodynamic trade off; cost vs exergy efficiency [40]. 

4. Conclusion 

HTGRs represent a pivotal step toward achieving sustainable, efficient, and inherently safe energy systems. The integration 

of exergy analysis with multi-objective optimization frameworks, particularly those based on MOEAs, has proven to be a 

powerful strategy for enhancing reactor thermodynamic performance while balancing competing criteria such as efficiency, 

safety, and cost-effectiveness. The reviewed studies demonstrate that methods like NSGA-II, MOPSO, and their hybrid or 

adaptive variants are capable of generating well-distributed Pareto fronts, effectively elucidating trade-offs between exergy 

efficiency and total exergy destruction. Optimized HTGR configurations, especially those coupled with advanced Brayton 

or supercritical CO₂ (S–CO₂) cycles, consistently achieve exergy efficiencies between 45% and 55%, representing 

significant improvements over conventional cycles. However, despite these advancements, several methodological and 

computational challenges persist. The high computational demand of MOEAs, uncertainties in high-temperature material 

properties, and the absence of standardized multi-criteria performance metrics remain key barriers to broader 

implementation. Addressing these issues requires the incorporation of robust uncertainty quantification, high-fidelity 

material databases, and unified benchmarking frameworks that integrate thermodynamic, safety, economic, and 

environmental indicators within a single optimization platform. Looking forward, the convergence of AI, surrogate 

modeling, and digital twin technologies offers a transformative pathway toward real-time, adaptive exergy optimization of 

HTGRs. Hybrid AI–MOEA frameworks can substantially reduce computational costs, enhance global search capability, 

and enable continuous optimization across all reactor life stages from conceptual design to operational management. 

Ultimately, the evolution of such intelligent, self-optimizing systems will accelerate the transition toward next-generation 

reactors that are not only thermodynamically superior but also capable of autonomous decision-making, predictive 

diagnostics, and dynamic performance enhancement. These developments mark a decisive step toward a more resilient, 

efficient, and sustainable energy future. 

Ethical Consideration 

The authors of the article certify that all ethical principles related to research have been completely met. 



 

305 
 

Conflicts of Interest 

The authors declared that they have no conflicts of interest in this paper. Also, we declare the following financial interests 

that represent a conflict of interest in connection with the research works submitted. 

Data availability 

The data that has been used is confidential. 

References  

[1] J. U. Ahamed, R. Saidur, H. H. Masjuki, A review on exergy analysis of vapor compression refrigeration system. Renew. Sustain. Energy Rev., 15 

(3) (2011), 1593–1600. 

[2] S. R. Park, A. K. Pandey, V. V. Tyagi, S. K. Tyagi, Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev., 

30 (2014), 105–123. 

[3] T. K. Ibrahim, M. Kamil Mohammed, O. I. Awad, A. N. Abdalla, F. Basrawi, M. N. Mohammed, G. Najafi, R. Mamat, A comprehensive review on 

the exergy analysis of combined cycle power plants. Renew. Sustain. Energy Rev., 90 (2018), 835–850. 

[4] R. Kumar, A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. Eng. Sci. Technol. Int. J., 20 

(1) (2017), 283–292. 

[5] OECD Nuclear Energy Agency, High-temperature gas-cooled reactors and industrial heat applications. OECD Publishing (2022). 

[6] A. Kumar, P. V. Tsvetkov, A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis. Ann. Nucl. Energy, 

85 (2015), 27–35. 

[7] L. Jiang, Y. Zhang, X. Wang, High-temperature gas-cooled reactors: Technology and applications. Prog. Nucl. Energy, 123 (2020), 103262. 

[8] Nuclear Energy Agency (NEA) OECD, High temperature gas-cooled reactors: Current status and applications. OECD Publishing (2021). 

[9] Nuclear cogeneration with high temperature reactors. EPJ Nucl. Sci. Technol., (2019). 

[10] N. G. Abrosimov, A. N. Morozov, S. V. Sinyavskiy, V. V. Shutov, HTGR – New prospects for nuclear energy. Nucl. Eng. Des., 129 (2020), 43–45. 

[11] P. Zhang, J. Xu, L. Shi, Z. Zhang, Nuclear hydrogen production based on high temperature gas cooled reactor in China. Strategic Study of CAE, 21 

(2019). 

[12] H.-R. Bahrami, M. A. Rosen, Exergoeconomic evaluation and multi-objective optimization of a novel geothermal-driven zero-emission system for 

cooling, electricity, and hydrogen production capable of working with low-temperature resources. Energy Syst., 12 (2024). 

[13] H. Azariyan, M. Vajdi, T. H. Rostamnejad, Assessment of a high-performance geothermal-based multigeneration system for production of power, 

cooling, and hydrogen: Thermodynamic and exergoeconomic evaluation. Energy Convers. Manage., 236 (2021), 113970. 

[14] A. B. Atilio, F. C. Parise, J. A. Martins, Exergy analysis and fuel exergy allocation in a HTGR direct combined cycle. Proc. ICONE20-POWER2012, 

(2013), 137–144. 

[15] N. Norouzi, S. Talebi, M. Fani, H. Khajehpour, Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant. Nucl. 

Eng. Technol., (2021). 

[16] R. Bartnik, A. Hnydiuk-Stefan, Evaluation of energy and economic efficiency in upgrading coal-fired power plants: Integrating HTGR reactors and 

turboexpanders for supercritical steam parameters. Energy, 318 (2025), 134763. 

[17] Y. Zhou, Y. Zhang, H. Li, Y. Yang, W. Bai, C. Zhang, X. Zhang, M. Yao, Thermo-economic and environmental analyses of supercritical carbon 

dioxide Brayton cycle for high temperature gas-cooled reactor. Prog. Nucl. Energy, 177 (2024), 105461. 

[18] H. Neser, G. Van Schoor, K.R. Uren, Energy-based fault detection and isolation of a Brayton cycle-based HTGR power conversion unit – A 

comparative study. Ann. Nucl. Energy, 164 (2021), 108616. 

[19] Q. Wang, R. Macián-Juan, X. Ye, H. Xie, B. Yang, W. Xiong, Thermodynamic analysis of a multi small modular reactor-driven clean electricity-

steam cogeneration system with potential for petrochemical industry decarbonization. Energy Convers. Manage., 347 (2026), 120568. 

[20] J. Zhao, Y. Li, J. Bai, L. Ma, C. Shi, G. Zhang, J. Shi, Multi-objective optimization of marine nuclear power secondary circuit system based on 

improved multi-objective particle swarm optimization algorithm. Prog. Nucl. Energy, 161 (2023), 104740. 

[21] P. R. Wilding, N.R. Murray, M.J. Memmott, The use of multi-objective optimization to improve the design process of nuclear power plant systems. 

Ann. Nucl. Energy, 137 (2020), 107079. 

[22] S. Sukpancharoen, B. Prasartkaew, Combined heat and power plant using a multi-objective Henry gas solubility optimization algorithm: A 

thermodynamic investigation of energy, exergy, and economic (3E) analysis. Energy Rep., 7 (9) (2021), e08003. 



 

306 
 

[23] A. Shahsavar, A. Jahangiri, G. Ahmadi, Energy and exergy analysis and multi-objective optimization of using combined vortex tube-

photovoltaic/thermal system in city gate stations. Renew. Energy, 196 (2022), 1017–1028. 

[24] International Atomic Energy Agency, IAEA-TECDOC-1645: High Temperature Gas Cooled Reactor Fuels and Materials. IAEA, Vienna (2010). 

[25] C. Wang, Design, analysis and optimization of the power conversion system for the modular pebble bed reactor system. PhD thesis, Massachusetts 

Institute of Technology (2003). 

[26] U.S. Department of Energy, High Temperature Gas Cooled Reactor (HTGR) Safety Design Features. DOE (2015). 

[27] International Atomic Energy Agency, IAEA TECDOC‑2090: Coated Particle Fuels for High Temperature Gas Cooled Small Modular Reactors. 

IAEA, Vienna (2025). 

[28] Nuclear Energy Agency, NEA report‑7560: Small Modular Reactors: Challenges and Opportunities. NEA (2021). 

[29] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6 (2) 

(2002), 182–197. 

[30] J. Zhao, Y. Wang, H. Liu, Z. Sun, Adaptive multi-objective particle swarm optimization for marine nuclear power secondary circuit system. Appl. 

Energy, 335 (2023), 120907. 

[31] C. A. Coello Coello, G. B. Lamont, D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd Edition. Springer 

(2007). 

[32] J. Li, Z. Gong, G. Miao, X. Wang, L. Yuan, X. Jia, H. Ma, Multi-objective optimization of power-gas-heat integrated energy system based on 

NSGA-II-MOPSO hybrid intelligent algorithm. Nat. Commun. (2025). 

[33] M.J.C.S. Reis, Symmetry-guided surrogate-assisted NSGA-II for multi-objective optimization of renewable energy systems. Symmetry, 17 (8) 

(2025), 1367. 

[34] Y. Li, Z. Xie, S. Yang, Z. Ren, A hybrid algorithm based on NSGA-II and MOPSO for multi-objective designs of electromagnetic devices. IEEE 

Trans. Magn., 59 (5) (2023). 

[35] A.G. Carvalho, A. F. Araujo, Improving NSGA-II with an adaptive mutation operator. Neural Comput. Appl., (2013). 

[36] T. B. Minh, N. T. Kien, Adaptive control technique to enhance differential multi-objective evolutionary algorithm based on variation rate of quality 

measures. J. Mil. Sci. Technol., 93 (2024). 

[37] R. Yan, L. Zheng, X. Jin, Parameter adaptive differential evolution based on individual diversity. Algorithms, 17 (7) (2025), 1016. 

[38] J. Zheng, J. Ning, H. Ma, Z. Liu, A dynamic parameter tuning strategy for decomposition-based multi-objective evolutionary algorithms. Algorithms, 

14 (8) (2024), 3481. 

[39] P. Behnam, M. Faegh, I. Fakharı, P. Ahmadı, E. Faegh,  M.A. Rosen, Thermoeconomic analysis and multi-objective optimization of a novel 

trigeneration system consisting of Kalina and humidification–dehumidification desalination cycles. Edith Cowan Univ. (2022). 

[40] M. Nasouri, N. Delgarm, Thermo-economic-environmental analysis and performance-based Pareto optimization of a floating nuclear power plant. 

Nucl. Eng. Des., 438 (2025), 114013. 

[41] Y. Ahn, S. Lee, Cycle design and analysis of high-temperature gas-cooled reactor coupled with supercritical CO₂ Brayton cycle. Energy, 86 (2015), 

202–213. 

[42] M. Khodabandehloo, M. Amidpour, H. Amini, Exergy analysis and optimization of a high temperature gas-cooled reactor (HTGR) with different 

configurations. Energy Convers. Manage., 76 (2013), 938–949. 

[43] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley & Sons (2001). 

[44] C. Zhang, M. Li, Computational challenges and recent advances in evolutionary multi-objective optimization: A survey. Swarm Evol. Comput., 63 

(2021), 100868. 

[45] D. Petti, P. Wilson, Key differences in the safety and operation of the pebble bed modular reactor (PBMR) and high temperature gas-cooled reactor 

(HTGR) designs. Nucl. Eng. Des., 222 (2–3) (2003), 281–297. 

[46] R. Bratton, J. Smith, High temperature materials issues for next generation nuclear plants. J. Nucl. Mater., 392 (2) (2006), 448–455. 

[47] A. Forrester, A. Sobester, A. Keane, Engineering design via surrogate modelling: A practical guide. Wiley (2008). 

[48] Z. Sun, H. Li, X. Wang, Hybrid GA–PSO algorithm for complex multi-objective engineering optimization problems. Appl. Soft Comput., 89 (2020), 

106100. 

[49] J. Guo, Y. Chen, X. Li, Digital twin-based intelligent optimization for nuclear power systems. Prog. Nucl. Energy, 160 (2023), 104471. 



 

307 
 

[50] J. Liu, H. Zhang, Y. Wang, Machine learning and surrogate modeling for nuclear system simulation and optimization. Nucl. Eng. Des., 382 (2021), 

111393. 

[51] H. Zhao, J. Li, Y. Wang, Surrogate-assisted and hybrid AI–evolutionary optimization methods for advanced reactor design: A review. Ann. Nucl. 

Energy, 171 (2022), 109022. 


