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Abstract 

The increasing electricity consumption for air cooling and conditioning in buildings 

has become a significant challenge in Iran, driven by population growth, global 

warming, limited energy production and distribution capacities, and concerns about the 

reliance on fossil fuels for electricity generation. This study investigates energy 

consumption patterns of cooling systems in three buildings at Amirkabir University of 

Technology: Civil and Environmental Engineering (Building No. 2), Computer 

Engineering, and Aerospace Engineering. Using energy consumption data, the study 

identifies key factors related to building characteristics and user behavior that impact 

cooling energy usage. A Random Forest analysis revealed that among 14 factors, 9 

were most significant, with the number of staff, number of students, and the 

distribution percentage of operating units ranked as the top three. These findings 

provide insights for developing effective energy conservation strategies tailored to 

university buildings in similar contexts. 
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1. Introduction 

Energy consumption represents one of the most critical challenges to achieving sustainable development in today's world 

[1,2]. Population growth, urbanization, global warming, and the depletion of fossil fuel resources pose significant obstacles 

to providing electricity for building cooling systems [3,4]. Moreover, the increase in energy consumption, coupled with the 

burning of fossil fuels to meet this demand, exacerbates climate change, leading to natural disasters such as tsunamis, 

floods, and wildfires[3-5]. This, in turn, increases the demand for cooling, creating a destructive feedback loop that 

undermines environmental sustainability and development goals [6]. 

In addition to transitioning from non-renewable to renewable energy sources, reducing energy consumption—particularly 

in buildings—is essential[7]. Understanding the factors influencing energy use in buildings can provide policymakers and 

decision-makers with valuable insights for designing effective energy management strategies [8]. This approach helps to 

avoid the inefficiencies and costs associated with trial-and-error implementation of energy-saving measures[9,10]. 

This study focuses on identifying the most significant factors influencing the energy consumption of cooling systems in 

office-educational buildings at Amirkabir University of Technology. Data were collected from the university's mechanical 

facilities office, as well as through field observations and interviews. A Random Forest (RF) model, implemented in Python, 

was used to analyze the data, and solutions were proposed to reduce energy usage. 

The subsequent sections of this paper detail the research process. The "Data Collection" section describes the types and 

methods of gathering electricity consumption data from Amirkabir University. The "Methodology" section outlines the data 

preprocessing steps and the Random Forest model used for analysis. The results of the analysis, along with proposed energy-

saving solutions, are presented in the fourth section. Finally, the study concludes with a discussion of its limitations and 

recommendations for future research. 

Data collection 

Building energy consumption data can be categorized into three groups: (1) physical attributes of the building and its 

energy-consuming systems, (2) weather data, and (3) occupants’ characteristics [11]. 

The physical attributes of buildings and their energy-consuming systems encompass factors such as building age, area, 

materials, insulation properties, and the characteristics of systems like heating, cooling, conditioning, and lighting. Weather 

data, which include variables such as air temperature, natural lighting intensity and duration, wind speed, and other 

environmental factors, significantly influence the energy consumption of systems in the first category. The third group, 

referred to as occupancy data, represents the characteristics and behaviors of building occupants. These data are the primary 

cause of the "performance gap" between energy consumption estimates made by prediction models and the actual energy 

use of buildings [12]. Occupancy data are typically complex, difficult to obtain, and cannot be incorporated into energy 

consumption estimates using purely physical calculations [6,9]. 

Collecting comprehensive and accurate data for all three categories is a challenging and time-consuming task [11,13]. While 

reducing the number of parameters used in energy consumption estimation may decrease prediction accuracy, it can 

significantly reduce the costs associated with data collection, prediction calculations, and energy management. 

Furthermore, not all data parameters contribute equally to energy usage. Identifying the most critical parameters can 

improve calculation efficiency and help determine the most effective energy conservation strategies [14,15]. 
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1.1. Data collection from Amirkabir University of Technology 

Energy consumption data from the Civil and Environmental Engineering (Building No. 2), Computer Engineering, and 

Aerospace Engineering faculties were collected from the university's mechanical facilities office. These data include energy 

consumption, building area, cooling system type (central or non-central), cooling system sub-type, and cooling system age. 

The data span three consecutive summer days in 2022, from September 22 to September 24. Additional parameters, 

identified through specialist opinions and a literature review, include the distribution of operational units, percentage of 

double-glazed windows, staff work hours, professors' and students' presence duration, and the daily number of individuals 

present in each building. 

The number of students present in each faculty building was determined through interviews with students, computer room 

operators, and library and study room staff. Since no classes are held during summer, the student count reflects those 

utilizing laboratories, study rooms, and computer rooms, representing the average number of individuals present per day. 

The number of staff present daily in each building was collected, with privacy protections in place, from the staff 

management office of each faculty. Work hours represent the average duration of staff presence in the buildings. The 

number of professors present each day was assumed to be half of the total number of professors assigned to each faculty. 

The percentage of double-glazed windows reflects the ratio of double-glazed windows to the total number of windows in 

each faculty, as reported by the university's mechanical facilities office. 

The distribution percentage of operational units was gathered following a suggestion from the university's mechanical 

facilities office. This parameter represents the ratio of floors with rooms used for offices, laboratories, professors' offices, 

computer rooms, and study halls to the total number of floors requiring cooling during summer (excluding classrooms, 

which were assumed to not require cooling during the observation period). This parameter is particularly significant when 

studying non-central cooling systems and was collected through field observations and interviews with staff and students. 

1.2. Approximation of daily average duration of presence of professors and students 

Since the presence of professors and students is not recorded during the summer, their average duration of presence was 

assumed to be equal to the staff's working hours. However, this parameter is inherently subject to some degree of error. 

1.3. Approximation of the age of buildings and cooling systems 

The age of each building is calculated as an approximate average of the ages of its floors, taking into account renovations 

and the construction of additional floors over the building's lifespan. Similarly, the age of the cooling systems is determined 

as an average, factoring in total overhauls and repairs. Both parameters were obtained through inquiries made to the 

university's mechanical facilities office. 

1.4. Approximation of working hours of central and non-central cooling systems 

To ensure thermal comfort for occupants and considering the operational characteristics of central cooling systems, the 

"pre-cooling" process typically begins approximately one hour before people arrive at the building. It is assumed that these 

systems are turned off immediately after occupants leave the building. Consequently, the operating duration of central 

cooling systems is considered to be the daily working hours plus one additional hour. In contrast, non-central cooling units 

are presumed to be directly controlled by occupants and to operate only while people are present in the room, corresponding 

to the staff's working hours. 

1.5. Translating Computers' Cooling Requirements into Human Equivalents 
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Assuming that laboratory machines and equipment are adequately insulated, the heat generated by computers (both 

university-owned and students’ personal devices) contributes to the cooling load on the building’s cooling system. 

According to the literature [16,17], each laptop generates a cooling load equivalent to that of an average human, while each 

desktop computer produces a cooling load equivalent to that of three average humans. Consequently, a person with a laptop 

imposes a cooling load equivalent to two people, and a person using a desktop computer imposes a cooling load equivalent 

to four people. Additionally, some desktop computers were operated remotely by students, generating heat equivalent to 

three people present in the building. The number of desktop computers used remotely or within university buildings, as 

well as the number of individuals present with laptops, was determined through field observations and interviews. 

2. Methodology 

As previously mentioned, incorporating occupant behavior into energy consumption prediction solely through physical 

calculations is time-consuming or even impractical. Therefore, this study employs a Random Forest model to: 

• Establish a method for estimating energy consumption in office-educational buildings, and 

• Identify the most influential parameters affecting cooling system energy usage based on the collected 

data. 

This section describes the Decision Tree and Random Forest algorithms, along with preprocessing steps, which are essential 

before introducing data to a machine learning regression model. 

2.1. Decision Tree 

A Decision Tree is a supervised machine learning algorithm that uses data entropy to categorize information based on 

conditions that maximize “Data Gain.” “Figure 1” illustrates a schematic representation of a Decision Tree with two 

independent parameters. 

As shown in “Fig. 1”, the Decision Tree is trained using a dataset with two independent parameters (X₁ and X₂). The tree 

begins categorizing data by imposing conditions on these parameters. For instance, in the first step, drawing the line 

X2=a.results in data on each side of the line being more similar compared to any other hypothetical line. The tree then 

draws subsequent lines (X1=b and X1=c) on each side of X2=a to achieve the same goal iteratively. This process continues 

until the regression error falls below a target threshold or a predefined number of iterations is reached. Finally, the model 

assigns the input data sample to one of the established categories based on the training conditions, and the predicted output 

is the average of outputs in that category. 

 

Fig. 1. An example of a decision tree. 
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2.2. Random Forest 

A Random Forest is an ensemble learning algorithm comprising multiple Decision Trees [18]. The Random Forest output 

is the average of outputs from its individual Decision Trees, each incorporating different subsets of input parameters. This 

structure makes Random Forest more accurate than a single Decision Tree, less prone to overfitting, and more effective at 

ranking input parameter significance. All parameters have multiple opportunities to participate in calculations, enhancing 

the model's robustness [19, 20]. 

2.3. Preprocessing 

Preprocessing is a critical step in developing machine learning algorithms. It typically involves the following tasks: 

• Separating input parameters from the output(s), 

• Quantifying categorical data, 

• Normalizing parameter scales, 

• Dividing datasets into “Learning” and “Testing” datasets. 

2.3.1. Separating Input Parameters from the Output(s) 

In supervised machine learning, independent (input) and dependent (output) parameters are introduced to the model. The 

algorithm learns the relationship between them and uses this understanding to predict outputs for new input data. To achieve 

this, it is essential to clearly identify the “goal” parameter to guide the model. 

2.3.2. Quantifying Categorical Data 

Qualitative data cannot be directly compared to quantitative data in a model. Therefore, it must be transformed into 

numerical form. For binary categories (e.g., Yes/No), values such as 0 and 1 can be assigned. Similarly, categorical data 

with “n” categories can be represented by integers from 0 to “n−1”. However, including all “n” categories introduces 

redundancy—known as the “dummy variable trap.” For instance, a parameter with three categories (0, 1, or 2) does not 

require explicitly representing “n−1”, as the third category can be inferred. 

2.3.3. Normalizing Parameter Scales 

Parameters with different ranges or amplitudes must be scaled to ensure equal influence on output predictions. For instance, 

a parameter ranging from 0 to 1 could otherwise be overshadowed by one ranging from 10 to 1000. Standardization is 

commonly used, transforming parameters to have an average of 0 and a variance of 1. Importantly, the specific average and 

variance values do not affect the prediction as long as they are consistent across all parameters. 

2.3.4. Separating Datasets into Learning and Testing Sets 

Machine learning models are trained on “Learning” datasets and evaluated on “Testing” datasets to measure performance. 

A typical ratio for splitting data is 70:30 between Learning and Testing sets. 

After preprocessing, the data is prepared for introduction into the machine learning algorithm. 

3. Results 

The primary objective of this study was to identify the most influential factors affecting cooling system energy consumption 

and to determine the most effective energy conservation strategies for office-educational buildings at Amirkabir University 

of Technology. 

Using a Random Forest model, the collected data were analyzed, revealing that 9 out of 14 parameters significantly 

influenced building cooling system energy usage. Fig. 2 illustrates the changes in mean squared error (MSE) after 
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systematically removing each parameter. The “jumps” in the diagram indicate that the removal of 5 specific parameters 

does not significantly impact the model’s accuracy. These parameters are: 

• Cooling system age, 

• Central cooling system working hours, 

• Existence of evaporative coolers, 

• Building age, and 

• Number of professors. 

 

Fig. 2. MSE Changes after parameter omissions. 

The remaining 9 parameters, identified by the Random Forest model as the most influential in cooling system energy 

consumption, are ranked below in order of importance, from most to least significant: 

• Number of staff, 

• Number of students, 

• Distribution of operational units, 

• Non-central cooling system working hours, 

• Percentage of double-glazed windows, 

• Average working hours, 

• Existence of absorption chillers, 

• Building area, and 

• Whether or not the cooling system is central. 

3.1. Effect of Staff Presence on Cooling System Energy Usage 

Table 1. Hourly Staff Numbers in Civil and Environmental Engineering Faculty. 

    Date  

Time 
Sep 22 Sep23 Sep24 

6-7 3 3 5 

7-8 13 13 10 

8-9 13 15 14 

9-10 14 15 14 

10-11 14 15 14 

11-12 14 15 14 

12-13 14 15 13 
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13-14 14 15 13 

14-15 9 8 6 

15-16 7 7 4 

16-17 7 6 4 

17-18 6 4 4 

18-19 5 4 2 

19-20 4 1 0 

20-21 3 0 0 

21-22 1 0 0 

 

The number of staff present each day emerged as the most influential factor in building cooling system energy consumption. 

Staff presence records (provided without personal identifiers) were used to calculate the number of staff present each hour, 

as shown in “Tables 1–3”. Regression results, considering only staff numbers, are illustrated in “Figs. 3–5”. 

It was observed that most staff members left their respective faculties by 3–4 p.m. Additionally, the number of students and 

professors was assumed constant throughout the day, leading to inaccuracies in regression results after 4 p.m. Despite this, 

other parts of the diagrams confirm a direct correlation between energy usage and staff numbers, aligning with findings in 

existing literature [21]. 

Table 2. Hourly Staff Numbers in Aerospace Engineering Faculty. 

    Date  

Time 
Sep 22 Sep23 Sep24 

6-7 1 3 0 

7-8 7 7 4 

8-9 8 7 4 

9-10 8 7 4 

10-11 8 7 4 

11-12 8 7 4 

12-13 8 7 4 

13-14 8 7 4 

14-15 6 5 4 

15-16 5 5 3 

16-17 5 5 3 

17-18 2 1 1 

18-19 1 1 1 

19-20 1 1 0 

20-21 1 0 0 

21-22 1 0 0 
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Fig. 3. Hourly Electricity Usage in Civil and Environmental Engineering Faculty. 

 

Fig. 4. Hourly Electricity Usage in Aerospace Engineering Faculty.  

3.2. Effect of Distribution of Operational Units on Cooling System Energy Usage 

Table 3. Hourly Staff Numbers in Computer Engineering Faculty. 

    Date  

Time 
Sep 22 Sep23 Sep24 

6-7 3 1 1 

7-8 7 4 4 

8-9 7 6 5 

9-10 7 6 5 

10-11 7 6 5 

11-12 7 6 5 

12-13 7 6 5 

13-14 7 6 5 

14-15 6 4 3 

15-16 4 4 3 

16-17 4 3 3 

17-18 2 3 2 

18-19 2 2 2 

19-20 2 2 1 

20-21 1 0 0 

21-22 0 0 0 
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Fig. 5. Hourly Electricity Usage in Computer Engineering Faculty.  

During summer, with no classes being held, it was assumed that professors’ offices, laboratories, study halls, and computer 

rooms were the primary spaces requiring cooling. Consequently, the distribution of these spaces across building floors 

significantly affected cooling system energy consumption. 

At the time of data collection, the following floors required cooling: 

• Civil and Environmental Engineering faculty: 4 out of 7 floors, 

• Aerospace Engineering faculty: 4 out of 5 floors, 

• Computer Engineering faculty: 3 out of 4 floors. 

Assuming an optimal distribution (e.g., two floors per building: one for professors’ offices and one for other operational 

units), the estimated reduction in energy consumption was less than 0.3% per building. Although ideal, this scenario is not 

necessarily practical. 

3.3. Effect of Reducing Non-Central Cooling System Operating Hours 

According to the Random Forest model, reducing the operating duration of non-central cooling systems by 60 minutes 

could lead to a reduction of up to 6% in energy consumption. The importance of this parameter has also been highlighted 

in related studies [22]. 

3.4. Increasing the Percentage of Double-Glazed Windows 

Replacing all windows in the studied buildings with double-glazed ones could result in a reduction of up to 7% in energy 

consumption. Additionally, the window-to-wall area ratio on perimeter walls significantly impacts energy usage. As noted 

in [23], this ratio's optimal value depends on wall orientation, but an average ratio of 0.2 could potentially reduce annual 

cooling loads by 15–20 kWh per square meter of building area. 

3.5. Effect of Absorption Chillers and System Centralization 

To evaluate the impact of absorption chillers on energy consumption, the cooling systems were hypothetically altered: 

• Civil and Environmental Engineering faculty (originally relying on absorption chillers) was modeled with non-

central cooling systems. 

• Aerospace and Computer Engineering faculties were modeled with combined (central and non-central) 

cooling systems. 

The results revealed the following changes: 

• Civil and Environmental Engineering faculty: up to 11% reduction in energy consumption. 

• Aerospace Engineering faculty: up to 17% increase in energy consumption. 

• Computer Engineering faculty: up to 18% increase in energy consumption. 
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These findings align with prior studies, which indicate that giving occupants control over HVAC systems can lead to up to 

70% energy savings, while improper usage may increase consumption by up to 35% [24,25]. 

Limitations:  

Data Sample Size: 

• The study analyzed data from only a few days, limiting accuracy. With more samples, results could vary, 

and the significance of certain parameters, such as building area, cooling system age, and building age, may 

become more evident. 

• Literature suggests building area as a key parameter in energy usage [21,22]. 

System and Building Age: 

• Cooling systems across all buildings were older than their optimal lifecycle, affecting efficiency. Updated 

systems might yield different results, with newer central systems potentially outperforming non-central ones [26]. 

• Building age, identified as a critical factor in energy usage in other studies [21], may have been 

underestimated due to the similar ages of the buildings analyzed. 

Building Insulation: 

• None of the buildings had proper insulation. Literature suggests adequate insulation could reduce energy 

consumption by up to 64%, especially when paired with passive cooling measures [21,26,27]. 

Occupancy Details: 

• Parameters such as professors’ presence may have been underestimated due to a lack of detailed data. 

Professors directly control their cooling systems, which significantly impacts energy consumption. 

Occupants' Characteristics: 

• Privacy concerns prevented collecting personal data such as energy habits, thermal preferences, or 

demographic information. 

Weather Factors: 

• Data collection was limited to three days with similar weather conditions, excluding significant weather 

variability's impact on cooling energy usage. 

Other Building Systems: 

• The study did not consider heat production and energy consumption from lighting or laboratory 

equipment due to measurement constraints. 

4. Conclusions 

This study identified the most influential factors in cooling system energy usage in office-educational buildings at 

Amirkabir University of Technology. While limitations affected some parameters' evaluation, the results offer valuable 

insights into energy conservation strategies, emphasizing the importance of staff presence, cooling system operation hours, 

and building insulation. Future studies could benefit from larger datasets, a broader scope of parameters, and improved data 

collection methods to enhance analysis accuracy. 
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