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Abstract 
In this research, we integrate digital twin (DT) technology through a platform designed for simulating 

and managing the autonomous aerial monitoring procedure of photovoltaic (PV) power plants, known 

as Digital-PV. This innovative platform enables users to test various scenarios and configurations of PV 

power plants, allowing for an evaluation of their impact on the autonomous aerial monitoring process. 

By doing so, it reduces the risks associated with real-world experiments and helps pinpoint the most 

effective strategies for improving PV system monitoring. Digital-PV also provides a virtual environment 

for conducting tests of autonomous flights and missions, covering aspects such as boundary detection, 

path planning, and fault detection. It includes features for generating data that inform the development 

of data-driven monitoring and inspection models. The development process of Digital-PV involved 

creating a digital twin of a utility-scale PV plant within Unreal Engine, simulating aerial robot flight 

with AirSim, and expanding of application programming interface (APIs) to enable our platform to adapt 

to different scenarios for evaluating smart monitoring models and collecting datasets. Moreover, 

throughout the study, a dataset of synthetic aerial images was collected from Digital-PV, which was 

subsequently used to train an end-to-end segmentation model aimed at detecting bird droppings on PV 

panels. Ultimately, this platform evaluated a range of intelligent aerial monitoring models, providing 

valuable insights into their capabilities and potential effectiveness in real-world applications. 
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1. Introduction 

In recent years, the global installation of large-scale photovoltaic (PV) power plants has surged. The International 

Renewable Energy Agency (IRENA) projects that by 2050, PV systems will supply over one-third of the world's electricity 

demand [1,2]. To ensure energy performance and reliability, efficient monitoring strategies are essential as the number and 

size of PV plants continue to grow [3]. 

Over the past two decades, the fields of artificial intelligence (AI), machine learning (ML), and deep learning (DL) have 

increasingly been leveraged to enhance the modeling of photovoltaic (PV) plants and streamline defect detection and 

decision-making processes within these plants [4–6]. Meanwhile, the rise of aerial robots in the last decade has emerged as 

a practical solution for monitoring and inspecting various sites, including PV plants [7,8]. Utilizing aerial robots for this 

purpose offers a quick, precise, and convenient method for inspections [9].  

The aerial imagery captured during inspections by these aerial robots, when analyzed using advanced AI technology, serves 

as an effective tool for monitoring PV power plants. The images collected can be processed either offline or online, yielding 

valuable insights that enhance the efficiency and performance of the plants. This innovative approach has transformed 

traditional monitoring and inspection processes, increasing their speed and accuracy while cutting costs. It has also paved 

the way for the concept of autonomous aerial monitoring (AAM) for PV plants, marking a significant advancement in the 

field.  

A great deal of progress has been made recently in the field of AAM of PV power plants. Most of these studies have 

primarily focused on automatically detecting faults in different types of aerial PV imagery, including visual [10], Infrared 

(IR) [11,12], and Electroluminescence (EL) [13] images. These studies have investigated a diverse range of faults for 

detection, including hot spots [14], bird drops [15], Shading and soiling [16], snail trails, glass breakage, burn marks, 

delamination, and discoloration [17,18], etc.  

some studies have focused on enhancing time and battery efficiency during aerial PV monitoring by investigating the 

monitoring path, planning the optimal path, and identifying the optimal waypoints [19–21]. The traveling salesman 

algorithm [19] and density clustering, boustrophedon planning, and Bezier curves [20] were utilized to minimize battery 

usage. Similarly, a joint approach of Bezier curves and particle swarm optimization (PSO) considered flight attitude, path 

length, and gimbal limitations for path planning optimization [21]. 

Accurately defining the plant boundaries as a prerequisite for monitoring path planning is an essential task in the AAM of 

PV plants. A U-Net architecture was employed in [22,23] for effective boundary extraction followed by the use of different 

algorithms to determine the best flight path, with the exact cellular decomposition boustrophedon and grid-based wavefront 

coverage algorithms yielding the best results. Also, the Fully Convolutional Network (FCN) was utilized In [24,25], for 

semantic segmentation and extraction of the PV plant boundary. 

One of the key challenges in employing AI techniques for monitoring PV plants is the difficulty in acquiring a large set of 

annotated data [26]. Public datasets are often limited [27,28], and conducting field flights for data collection can be costly, 

given the potential for damage to aerial robots or PV panels. Moreover, labeling data in a vast dataset can be a time-

consuming and tedious task. To tackle these challenges, this paper introduces a framework that leverages digital twin (DT) 

technology. 

The DT concept has gained considerable traction in the energy sector [29,30]. Our DT-based solution empowers users to 

simulate various scenarios and configurations of PV plants, evaluating their effects on these systems' monitoring processes. 

It also provides a virtual testing environment for autonomous flight missions, including boundary detection, path planning, 
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and fault detection (FD). Additionally, this framework allows for the efficient augmentation of our dataset with labeled 

images, facilitating the training of intelligent monitoring models. 

Our contribution, termed Digital-PV, includes several key elements: (i) the creation of a DT model for a utility-scale PV 

plant environment, (ii) expansion of an application programming interface (API) to enable our platform to adapt to different 

scenarios for evaluating smart monitoring models and collecting datasets, (iii) enhancement of detection capabilities by 

training the FD model using the synthetic data generated by Digital-PV, and (v) assessment of the performance of four 

monitoring models utilizing Digital-PV. With these contributions, Digital-PV aims to facilitate monitoring applications for 

PV systems, concentrating on automated aerial monitoring and the management and optimization of large-scale PV plant 

monitoring. This framework can be directly employed for on-site planning, data collection, and autonomous monitoring 

research of PV plants. 

In the rest of the paper, the design and construction of Digital-PV's main components and data interactions are outlined in 

Section 3. Section 4 illustrates the platform's effectiveness in creating and assessing various intelligent models for aerial 

monitoring tasks. We achieve this by generating a dataset using Digital-PV, training a fault detection (FD) model with the 

collected data, and testing intelligent monitoring models that autonomously execute a range of tasks for the aerial 

monitoring of the virtual PV plant.  

2. Development of Digital-PV 

 

Fig. 1. Interaction and data flow diagram of Digital-PV components [31]. 

Digital-PV is made up of four key components: a DT dashboard that includes the visualization interface, aerial robot ground 

control station (GCS), and analytical toolkit; a flight simulation module; a server back-end system featuring intelligent 

decision-making models and data storage; and an API layer that enables communication between these components. Fig. 1 

depicts how these components interact and the flow of data among them. 
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2.1. PV Plant’s Virtual Model Development in Unreal Engine 

Game engines have been suggested to create high-fidelity DTs of their physical counterparts by offering realistic graphics, 

lighting, fluid dynamics, and physics engines that simulate the real world. Using a game engine as the foundation of our 

DT-based platform enables the investigation of factors such as the sun's position, weather, air velocity, reflection, self-

shading, etc. that might affect the quality of the monitoring process. In addition, high-quality visualization is crucial for 

developing and evaluating computer vision models. Therefore, we utilize Unreal Engine (UE), created by Epic Games for 

Digital-PV development. Using UE also makes our platform possible to import photogrammetry-created 3D models, 

including those captured with a drone or a phone, into the 3D environment of the PV plant, creating an incredibly realistic 

setting.  

 

Fig. 2. An overall view of the virtual PV plant environment constructed for the 3D visual representation of the physical PV plant. 

This study utilized a standard game environment workflow to develop a virtual PV plant. It began by modeling a flat terrain 

of 4 square kilometers using UE’s landscape tools, incorporating minor variations for realism. To enhance the environment, 

pre-made assets and 3D models, such as trees, mountains, and rocks, were sourced from UE’s Marketplace and Quixel. 

Additionally, vegetation was added in varying densities to create a natural landscape. A procedural sky system was 

implemented, and atmospheric and lighting settings were adjusted to replicate real-world conditions. Volumetric clouds 

were included to affect lighting and cast shadows on the panels, with customizable cloud density, height, and thickness for 

realism. To integrate plant components like PV panels and wind turbines, necessary assets, and 3D models were acquired 

from marketplaces such as TurboSquid and SketchFab. Also, the PV panel prototype’s metal structure and glass texture 

were enhanced for realistic reflections. The static mesh of the PV panels and their structures was optimized for better 

performance by converting them to lower polygon, or "game-ready," assets to improve frame rate during simulations with 

numerous panels. Blueprints were also utilized to efficiently generate and arrange arrays of PV panels, allowing for a 

configurable and scalable environment. Fig. 2 shows the constructed environment. Finally, the built-in static mesh editor 

in UE was used to create custom meshes of bird droppings in various shapes and sizes, serving as fault characters on PV 

panels. This set includes five individual static meshes to simulate faults, aiding in dataset collection. 
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2.2. Aerial Robot Flight Simulation for performing AAM 

To accurately simulate aerial robot dynamics and mimic real-world behavior, we use AirSim to import the aerial robot into 

the virtual PV plant environment. AirSim provides tools for a generic quadrotor model, a physics engine for drag, 

acceleration, and collisions, and an environment model that includes magnetic fields, gravity, and air pressure. Additionally, 

it includes various sensors like barometers, gyroscopes, accelerometers, magnetometers, GPS units, and vision sensors such 

as RGB and depth cameras. AirSim enables both software-in-the-loop (SITL) and hardware-in-the-loop (HITL) simulations 

for a more realistic experience. It also features customization options through a .json settings file, which we modified 

specifically for our platform. We set up a fixed “ExternalCamera” at the PV plant's “Reference Point” to capture vertical 

images that encompass the entire plant boundary. The “CaptureSettings” were fine-tuned to achieve a resolution of 480×640 

with a 90-degree field of view. We adjusted the “MotionBlurAmount” to zero and increased the “AutoExposureSpeed” to 

100 to ensure that we obtain high-quality images without any blur. Moreover, we made use of the "Recording" option for 

dataset collection, with detailed parameters outlined in the relevant section. 

AirSim provides APIs for interacting with the vehicle during simulations, allowing control of the vehicle, image retrieval, 

state assessment, and more. In this research, we expanded its Python APIs to carry out a specific scenario involving four 

main tasks: 

- Providing an image of the entire PV plant for boundary extraction. 

- Generating a flight path for aerial monitoring using a path planning algorithm. 

- Iterative imaging of the PV arrays and processing images while the aerial robot follows the generated path. 

- Executing maneuver commands for detailed examination in case of fault or anomaly detection. 

At the beginning of the simulation, the user's desired weather conditions and time of day are set, followed by the 

initialization and take-off of the aerial robot. Users can choose between two methods for capturing an image of the entire 

PV plant: a fixed camera positioned at a reference point for a satellite-like view, or using the aerial robot to take a picture 

after increasing altitude towards the reference point and stabilizing at that point. This image is then used for boundary 

detection. Once the plant boundary is detected, a convex curve is drawn around it and sent to the path planning algorithm 

to create waypoints for aerial monitoring. 

With the waypoints established, the aerial robot heads to the first waypoint to begin monitoring. The gimbal on the robot's 

bottom camera adjusts to a 10-degree pitch angle for a better view of the panel surfaces. While following the planned path, 

the aerial robot continuously captures images of the panel surfaces with its camera. These images are fed into the fault 

detection (FD) unit, processed by an anomaly detection (AD) model to evaluate potential faults and output a "fault flag" to 

the decision-making unit.  Each image also includes a location tag, enabling the robot to autonomously deviate from its 

path for further investigation of detected issues. Upon receiving a fault flag, the decision-making unit determines whether 

to continue or maneuver for a closer look. If a fault flag is activated, the decision-making unit instructs the aerial robot to 

descend to the fault location and capture an image of the potentially defective panel.  This image is sent to the FD unit for 

further analysis by the module-level FD model. Fig. 3 illustrates the relationship and data flow between the aforementioned 

components. 

After the investigation, the fault flag is reset to zero, and the aerial robot ascends back to its previous altitude to continue 

toward the next waypoint. This process repeats until reaching the last waypoint and the monitoring mission is complete. 

Upon reaching the last point of the path, the aerial robot is commanded to return home, and it returns to its take-off location 

to complete the simulation scenario after landing.   
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Fig. 3. Visual representation of the interlinked functions driving Digital-PV's mission scenario execution. 

3. Generating Synthetic Training Data for Developing AI Models by Digital-PV 

This section will focus on showcasing the capabilities of Digital-PV in generating datasets for monitoring model 

development. In the following section, we will explore the testing of intelligent monitoring models designed for autonomous 

aerial monitoring of PV plants. 

Digital-PV enables the collection of diverse, realistic synthetic images from virtual PV environments, facilitating the 

training of AI models for various monitoring tasks, such as fault detection and boundary extraction. This study collected a 

dataset of PV panel images impacted by bird droppings. To simulate these faults, we created 3D models of bird droppings, 

featuring five unique static meshes strategically placed on panels with varying shapes, sizes, and orientations to represent 

different samples. 

In addition, the "Recording" settings in the AirSim pre-simulation setting file were adjusted to enable recording images 

from the aerial robot's bottom camera as desired. RGB images and their corresponding segmentation masks were recorded 

every 100 milliseconds in compressed PNG format, with dimensions of 3x480x640. The "RecordOnMove" parameter was 

enabled to avoid duplicate recordings when the vehicle stopped. During several flights over the PV plant, the aerial robot 

collected images of defective panels under various conditions, creating a dataset that reflects real-world scenarios. 

Ultimately, the dataset comprised 2,469 samples, each paired with a binary segmentation mask that labeled the PV panels 

and their faults. Fig. 4 shows some sample images from the collected dataset. 
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Fig. 4. Some sample images from the collected dataset. UE's movable lighting feature produced various lighting conditions. Panels 

were photographed from different angles, distances, and perspectives, capturing images that included one or more arrays. 

Additionally, two textures were applied to the PV plant's ground to simulate its location in desert and plain environments. 

3.1. Development of an End-to-end Fault Detection Model 

 

Fig. 5. Comparing end-to-end vs. multi-stage models for bird drop segmentation in aerial robot-captured aerial images. The multi-stage 

model has to be optimized for module extraction and fault segmentation separately under different criteria. 

In this study, an end-to-end segmentation model has been proposed for the automatic FD of PV panels. In this approach, 

there is no need to separately extract modules from aerial images captured by the aerial robot, which includes multiple PV 
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modules. Fig. 5 compares the end-to-end model with the multi-stage model for bird dropping segmentation in aerial photos 

captured by the aerial robot. 

Table 1 outlines the layer types, outputs, and parameters for both the encoder and decoder sections. The model has a total 

of 16,281,921 parameters, with 8,646,657 trainable and 7,635,264 non-trainable. 

Table 1. Layer types, outputs, and number of parameters produced per layer of FCN. 

 Layer (type) Output Shape Param  

 Input 1 (input layer) (480, 640, 3) 0  

 Block1 conv1 (Conv2D) (480, 640, 64) 1792  

 Block1 conv2 (Conv2D) (480, 640, 64) 36928  

 Block1 pool (MaxPooling2D) (240, 320, 64) 0  

 Block2 conv1 (Conv2D) (240, 320, 128) 73856  

 Block2 conv2 (Conv2D) (240, 320, 128) 147584  

 Block2 pool (MaxPooling2D) (120, 160, 128) 0  

 Block3 conv1 (Conv2D) (120, 160, 256) 295168  

 Block3 conv2 (Conv2D) (120, 160, 256) 590080  

 Block3 conv3 (Conv2D) (120, 160, 256) 590080  

 Block3 pool (MaxPooling2D) (60, 80, 256) 0  

 Block4 conv1 (Conv2D) (60, 80, 512) 1180160  

 Block4 conv2 (Conv2D) (60, 80, 512) 2359808  

 Block4 conv3 (Conv2D) (60, 80, 512) 2359808  

 Block4 pool (MaxPooling2D) (30, 40, 512) 0  

 Block5 conv1 (Conv2D) (30, 40, 512) 2359808  

 Block5 conv2 (Conv2D) (30, 40, 512) 2359808  

 Block5 conv3 (Conv2D) (30, 40, 512) 2359808  

 Conv2d transpose (Conv2DTranspose) (60, 80, 256) 1179904  

 Conv2d transpose 1 (Conv2DTranspose) (120, 160, 128) 295040  

 Conv2d transpose 2 (Conv2DTranspose) (240, 320, 64) 73792  

 Conv2d transpose 3 (Conv2DTranspose) (480, 640, 32) 18464  

 Conv2d transpose 4 (Conv2DTranspose) (480, 640, 1) 33  

The system employs an encoder-decoder-based FCN architecture, as proposed in [50], which is common in image 

segmentation. As illustrated in Fig. 6, the process starts by down sampling the input image and extracting its feature map 

using a modified VGG16 as the encoder unit of the network. To enhance training accuracy, transfer learning techniques are 

applied, utilizing pre-trained ImageNet weights for the weights of the first 14 layers. In the decoder, up sampling is carried 

out through deconvolution operations. This workflow is designed to map low-resolution features to full-resolution images 

for pixel-level segmentation. 
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Fig. 6. The encoder-decoder architecture. It consists of 13 convolution and 4 up-sampling layers combined with pooling and non-linear 

layers. Each layer is accompanied by an activation map 𝑚𝑖
𝑐. 

3.2. Training and Test Results  

For model training, the dataset images were divided into three groups: training (85%), validation (10%), and testing (5%). 

The training process consisted of 10 epochs with a batch size of 10, utilizing shuffled images to ensure diversity within 

each batch. A binary cross-entropy function, commonly employed for loss computation in image segmentation, was used 

to calculate the loss during training. This function compares the predicted value vector with the encoded target vector, as 

illustrated in Equation (1).  

 𝐻𝑃(𝑞) = −
1

𝑁
∑ 𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑦𝑖))𝑁

𝑖=1   (1) 

It evaluates each pixel, where y denotes the label of each pixel (1 for areas belonging to the fault and 0 for other areas), and 

p(y) represents the probability of each pixel being part of the target region (the fault area). The network's objective is to 

estimate the probability of each pixel belonging to the defect area. During the loss calculation, for all pixels in the fault 

region (where y = 1), the logarithm of p(y) is added to the total loss. Additionally, we utilized the Adam optimizer to update 

the network weights, using a learning rate of 0.001. The model parameters used in the training process are summarized in 

Table 2. 

Table 2. Model training parameters. 

Batch 

size 
Epochs 

Initial 

weight 
Loss function optimizer 

Activation 

function 

Last layer activation 

function 

10 10 ImageNet binary_crossentropy adam Relu Sigmoid 

 

Network performance is evaluated using pixel accuracy, which is calculated as shown in Equation (2). During training and 

validation, the system continuously updates accuracy and loss rates, achieving average accuracies of 98.31% for training 

and 97.93% for validation. The trained model accurately identifies birds on PV modules with a test accuracy of 95.2%. 

Additionally, precision calculated from Equation (3) is 94.44%, and recall calculated from Equation (4) is 94.89%.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2) 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
  (3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

Fig. 7 displays the predicted results and actual masks for three test images that remained unseen during training. 

 

Fig. 7. Predicted results for bird droppings are shown with actual masks, highlighted by red circles indicating detected faults. 

3.3. Assessment of Intelligent Monitoring Models’ Performance Using Digital-PV 

As previously mentioned, various intelligent aerial monitoring models can be assessed through Digital-PV to gain insights 

into their capabilities and potential performance in real-world scenarios. The performance of FD and boundary extraction 

models can be evaluated by Digital-PV using two key approaches. First, qualitative evaluations provide initial insights into 

the models, while quantitative analyses delve deeper into their effectiveness through various AI metrics like precision, F1-

score, recall, accuracy, the Dice coefficient, and Intersection over Union (IoU). To evaluate flight trajectories, the aerial 

robot can be flown in the simulator in different patterns using the same commands as for the real vehicle, gathering and 

comparing the positions from both modes in local North-East-Down (NED) coordinates along with timestamps. In the rest 

of this section, we will select specific models for each task and evaluate their performance through our developed 

simulations, presenting the results thereafter. 

3.3.1. Boundary Extraction Model Test 

Boundary extraction is the first step for aerial monitoring of a PV plant. Accurate boundary extraction is essential for precise 

path planning. In [32], two methods were utilized for extracting the boundaries of a PV plant. The first approach leverages 

CIP techniques, while the second relies on an image segmentation model that employs deep learning techniques. Both 

methods were evaluated through separate simulations in Digital-PV. This simulation offers insights into the boundary 

detection system and its potential real-world performance. 

To proceed, an image of the entire PV plant is captured and resized to fit the model's input layer according to the dimensions 

provided by the user. From this resized image, the boundary detection models produce a binary mask that indicates the PV 

plant area, assigning a value of one to pixels within the PV plant. The next step involves extracting points along the edge 
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of the defined boundary from this output. Given that a PV plant may contain multiple groups of PV arrays, which results 

in several white regions in the output mask, a convex hull is used to encircle the detected plant area. This creates a unified 

boundary curve that encompasses all sections of the PV plant.  Fig. 8 visually illustrates the steps taken for boundary 

extraction, utilizing both the CIP and DL-based models.  

 

Fig. 8. Boundary detection and convex closure drawing steps by employing CIP (left) and DL-based (right) models. 

3.3.2. Path Planning Model Test 

Path planning plays a crucial role in enabling autonomous monitoring of PV plants using aerial robots. Digital-PV's 

versatility in simulating PV plants of various scales and shapes, along with adjustable flight dynamics and parameters, 

allows for testing and evaluating path planning algorithms under different conditions.  

This section examines the performance of the algorithm presented in [25], which is designed for autonomous path planning. 

The algorithm starts by processing the plant boundary line obtained from the boundary extraction unit. After extracting the 

PV plant boundary (Fig. 9-left), the path planning model receives this input. Then, from the intersection of the boundary 

line with guidelines based on the plant’s width, flight altitude, and the aerial robot's camera FoV, defining the ground 

coverage area, flight waypoints are generated (see Fig. 9-right and Fig. 10).  
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Fig. 9. Path planning input (left) and Path planning output (right). 

 

Fig. 10. Transformation of aerial robot's waypoints to NED coordinate system. 

Finally, for the simulation of the aerial monitoring mission, waypoints are transmitted to the aerial robot via AirSim APIs, 

guiding it to the first waypoint and along the designated path. Fig. 11 illustrates the aerial robot’s trajectory as it navigates 

through the specified waypoints in the developed environment. 

 

Fig. 11. Aerial robot's trajectory after passing through the given waypoints. 



 

17 
 

3.3.3. Fault Detection Model Test 

The anomaly or FD model at two levels can be assessed during a single simulation in Digital-PV. At the start of the virtual 

monitoring mission, multiple panel images from different arrays are captured simultaneously within the camera's FoV due 

to the higher aerial robot's flight altitude. The model that processes the images in this situation is called the "array-level AD 

model". 

If the anomaly detection (AD) model identifies an issue at the array level, a maneuver command is issued, prompting the 

aerial robot to descend to a predetermined altitude. This adjustment places the aerial robot directly above the detected 

anomaly, allowing for the observation of individual modules or a single PV panel (Fig. 13). This close-up image is sent to 

the "module-level FD model" for further analysis before the aerial robot ascends back to its original altitude to continue its 

mission. Each model at these two levels can perform various tasks, such as classification and segmentation.  

Given that the end-to-end segmentation model developed in Section 4.2 can detect faults from aerial images without needing 

to extract PV modules, we evaluated its performance at both the array and module levels during the monitoring simulation. 

To detect anomalies in the array-level images, the platform provides 3D NumPy arrays of dimensions 3×640×480 as input. 

The model’s initial output is a 2D NumPy mapped to a numerical value within a specified range. If the output exceeds a 

certain threshold, the image is classified as faulty; if it falls below, it is considered healthy.(see Fig. 12) 

  

Healthy Faulty 

  

Faulty Faulty 

Fig. 12. Examples of the input images used for the AD model during monitoring, along with the corresponding predicted label for each 

image. 

When a fault flag is raised, the aerial robot lowers its altitude to hover above the PV modules and capture a close-up image. 

This image is delivered to the module-level FD model as a 3D NumPy array with dimensions 3×640×480 for further 
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analysis. Fig. 14 and Fig. 15 display the captured image of some defective panels identified during monitoring, along with 

their predicted segmentation masks 

 

Fig. 13. Aerial robot hovering over the faulty panel for precise capture. 

 

Fig. 14. Close-up taken image and corresponding segmentation mask. 

 

Fig. 15. Segmentation of bird droppings on a faulty PV panel. It can be seen that the assessed model works reasonably well in 

differentiating between sunlight reflections and bird droppings on PV panels. 

4. Conclusion  

In recent years, there has been a growing interest in deploying aerial robots and AI for the monitoring and management of 

PV plants. However, many studies continue to depend on real-world experiments, which often involve significant time and 
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expense. Our research presents a DT-based platform designed for simulating, developing, and testing various monitoring 

models in the context of AAM of PV plants. 

To accomplish this, we first created a virtual model of a utility-scale PV plant within UE. Following this, we implemented 

aerial robot flight simulations using AirSim, expanding its Python APIs to allow testing of different monitoring models in 

specified scenarios.  

We collected a dataset of aerial images showing defective panels within this simulation environment and trained an end-

to-end model to detect bird droppings on the PV panels. Furthermore, the developed environment enabled us to evaluate 

the performance of diverse monitoring models employed in the AAM of PV plants. Models such as plant boundary 

extraction, path planning algorithms, and fault detection approaches were assessed, yielding valuable insights into their 

capabilities and potential effectiveness in real-world applications.  

Looking ahead, we propose several recommendations for future studies in this field. The platform facilitates the integration 

of various simulation and analytical tools into a cohesive DT, presenting opportunities to enhance functionality by 

combining different software applications and leveraging the unique strengths of each. For example, incorporating 

analytical tools such as MATLAB/Simulink or energy simulation and management applications into the DT framework, 

along with creating a customizable dashboard for monitoring key performance indicators (KPIs) and receiving alerts about 

potential issues, could significantly boost the Digital-PV's simulation and analytical capabilities. In addition, establishing 

a library of virtual PV plants globally, along with models of various fault types, would also be particularly advantageous.  

On the other hand, enhancing the platform's simulation capabilities by developing APIs and utilizing AirSim’s features 

could allow for cooperative flight operations and the monitoring of PV power plants. This improvement would support the 

simulation of multi-agent systems (MAS) algorithms within Digital-PV, enabling researchers to explore and create swarm 

intelligence algorithms for inspection and monitoring tasks. 

However, challenges remain in expanding the Digital-PV platform, including integration complexity, scalability, simulation 

accuracy, and user engagement. Addressing these issues through a modular architecture, optimized algorithms, and user-

friendly interfaces complete with training resources will be essential for future success. 
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